Information Matrix
Filter Information matrix
Posts feedFunctions of a random variable
Assume we have a random variable, \(X\), with expected value \(\eta\) and variance \(\sigma^2\). Often we find ourselves wanting to know the expected value and variance of a function of that random variable, \(f(X)\). Fortunately there are some workable approximations involving only \(\eta\), \(\sigma^2\) and the derivatives of \(f\). In both cases we make use of a Taylor-series expansion of \(f(X)\) around \(\eta\):
\[f(X)=\sum_{n=0}^\infty \frac{f^{(n)}(\eta)}{n!}(X-\eta)^n\]
Mortality by the book
Working with constraints
Out of line
Groups v. individuals
Out for the count
Logistical nightmares
Great Expectations
When fitting statistical models, a number of features are commonly assumed by users. Chief amongst these assumptions is that the expected number of events according to the model will equal the actual number in the data. This strikes most people as a thoroughly reasonable expectation. Reasonable, but often wrong.
Do we need standard tables any more?
Actuaries are long used to using standard tables. In the UK these are created by the Continuous Mortality Investigation Bureau (CMIB), and the use of certain tables is often prescribed in legislation. As actuaries increasingly move to using statistical models for mortality, it is perhaps natural that they should first consider incorporating standard tables into these models. But are standard tables necessary, or even useful, in such a context?
Survival models v. GLMs?
At some point you may be challenged to decide whether to use survival models or the older generalised linear models (GLMs). You could be forgiven for thinking that the two were mutually exclusive, especially since some commercial commentators have tried to frame the debate that way.