Information Matrix
Filter Information matrix
Posts feedAnalysis of VaR-iance
In recent years we have published a number of papers on stochastic mortality models. A particular focus has been on the application of such models to longevity trend risk in a one-year, value-at-risk (VaR) framework for Solvency II. However, while a small group of models has been common to each paper, there have been changes in the calculation basis, most obviously where updated data have been used.
Fathoming the changes to the Lee-Carter model
Ancient Greek philosophers had a paradox called "The Ship of Theseus"; if pieces of a ship are replaced over time as they wear out until every one of the original components is gone, is it still the same ship? At this point you could be forgiven for thinking (a) that this couldn't possibly be further removed from mortality modelling, and (b) that I had consumed something a lot more potent than tea at breakfast.
Signal or noise?
Each year since 2009 the CMI in the UK has released a spreadsheet tool for actuaries to use for mortality projections. I have written about this tool a number of times, including how one might go about setting the long-term rate. The CMI now wants to change how the spreadsheet is calibrated and has proposed the following model in CMI (2016a):
\[\log m_{x,y} = \alpha_x + \beta_x(y-\bar y) + \kappa_y + \gamma_{y-x}\qquad (1)\]
Parameterising the CMI projection spreadsheet
The CMI is the part of the UK actuarial profession which collates mortality data from UK life offices and pension consultants. Amongst its many outputs is an Excel spreadsheet used for setting deterministic mortality forecasts. This spreadsheet is in widespread use throughout the UK at the time of writing, not least for the published reserves for most insurers and pension schemes.
Working with constraints
Excel's limits
(Un)Fit for purpose
The perils of parameter interpretation
With some notable exceptions, such as the Kaplan-Meier estimator, most mortality models contain parameters. In a statistical model these parameters need to be estimated, and it is a natural thing for people to want to place interpretations on those parameter estimates. However, this can be tricky, as parameters in a multi-parameter model are dependent on each other.