Information Matrix
Filter
Posts feedDon't fear the integral!
Actuaries denote with \({}_tp_x\) the probability that a life alive aged exactly \(x\) years will survive a further \(t\) years or more. The most basic result in survival analysis is the following relationship with the instantaneous mortality hazard, \(\mu_x\):
\[{}_tp_x = e^{-H_x(t)}\qquad(1)\]
where \(H_x(t)\) is the integrated hazard:
\[H_x(t) = \int_0^t\mu_{x+s}ds\qquad(2).\]
Seriatim data
In Macdonald & Richards (2024), Angus and I continue our long-standing advocacy for using individual records for mortality analysis, rather than grouped counts of lives. One argument in our paper is that the individual life is the most irreducible unit of observation in mortality analysis. After all, any group can be disaggregated into individuals, but further subdivision would just be dismemberment.
The product integral in practice
In a (much) earlier blog, Angus introduced the product-integral representation of the survival function:
\[{}_tp_x = \prod_0^t(1-\mu_{x+s}ds),\qquad(1)\]
The interrupted observation
A common approach to teaching students about mortality is to view survival as a Bernoulli trial over one year. This view proposes that, if a life alive now is aged \(x\), whether the life dies in the coming year is a Bernoulli trial with the probability of death equal to \(q_x\). With enough observations, one can estimate \(\hat q_x\), which is the basis of the life tables historically used by actuaries.
Smoothing
The late Iain Currie was a long-time advocate of smoothing certain parameters in mortality models. In an earlier blog he showed how smoothing parameters in the Lee-Carter model could improve the quality of the forecast. As Iain himself wrote, "this idea is not new" and traced its origins to Delwarde, Denuit & Eilers (2007).
Impossible Things
Impossibility has often featured in humourous fiction. From Lewis Carroll's White Queen, who "believed as many as six impossible things before breakfast", to Douglas Adams' Restaurant at the End of the Universe, there is entertainment value in absurdity.
Events, dear boy, events!
When asked what was most likely to blow a government off-course, Harold Macmillan allegedly replied "Events, dear boy, events!". Macmillan may not have actually uttered these words (Knowles, 2006, pages 33-34), but there's no denying that unexpected events can derail your plans. I was recently faced with some unexpected events, albeit in a rather different context.
Doing our homework
In Richards et al (2013) we described how actuaries can create mortality tables derived from a portfolio's own experience, rather than relying on tables published elsewhere. There are good reasons why actuaries need to be able to do this, and we came across a stark reminder of this while writing Richards & Macdonald (2024).
All change!
I have blogged previously about the risks in reinventing software that has already been built. As usual, I declare my complete and utter lack of independence in the opening paragraph - I run a business providing software services to actuaries. And while this blog might be self-interested(!), that doesn't make the point here any less true.
Software projects - the sting in the tail
In an earlier blog I looked at the arguments in favour of buying in specialist software, rather than trying to build it yourself. Of course, as someone whose business is providing software services for mortality and longevity work, I am somewhat partisan. To balance things out, I wrote a follow-up blog on when it makes sense - even for us - to source external sof