Information Matrix

Filter Information matrix

Posts feed
Publication date

Stopping the clock on the Poisson process

"The true nature of the Poisson distribution will become apparent only in connection with the theory of stochastic processes\(\ldots\)"

Feller (1950)

Written by: Angus MacdonaldTags: Filter information matrix by tag: Poisson distribution, Filter information matrix by tag: survival models

Thymus of the essence?

We've considered cancer and its relationship to aging on a number of previous occasions. Studies published in the British Journal of Cancer in 2011 and 2018 concluded that around 40% of cases are attributable to known modifiable lifestyle and environmental factors, which is a substantial minority.
Written by: Gavin RitchieTags: Filter information matrix by tag: longevity, Filter information matrix by tag: research, Filter information matrix by tag: cancer, Filter information matrix by tag: immunotherapy, Filter information matrix by tag: immunosenescence

Lump sum or annuity?

People are often faced with a decision whether to live off their savings or buy an annuity.  Normally such decisions are made around the retirement ages of 60–65.  However, an interesting counter-example has just been provided by eighteen-year-old Charlie Lagarde, the winner of a lottery in Canada. 
Written by: Stephen RichardsTags: Filter information matrix by tag: annuities, Filter information matrix by tag: life expectancy

The Curse of Cause of Death Models

Stephen's earlier blog explained the origin of the very useful result relating the life-table survival probability \({}_tp_x\) and the hazard rate \(\mu_{x+t}\), namely:

\[ {}_tp_x = \exp \left( - \int_0^t \mu_{x+s} \, ds \right). \qquad (1) \]

To complete the picture, we add the assumption that the future lifetime of a person now aged \(x\) is a random variable, denoted by \(T_x\), and the connection with expression (1) which is:

Written by: Angus MacdonaldTags: Filter information matrix by tag: cause of death, Filter information matrix by tag: competing risks

Analysis of VaR-iance

In recent years we have published a number of papers on stochastic mortality models. A particular focus has been on the application of such models to longevity trend risk in a one-year, value-at-risk (VaR) framework for Solvency II. However, while a small group of models has been common to each paper, there have been changes in the calculation basis, most obviously where updated data have been used.

Written by: Stephen RichardsTags: Filter information matrix by tag: Lee-Carter, Filter information matrix by tag: value-at-risk, Filter information matrix by tag: longevity trend risk, Filter information matrix by tag: Solvency II

Constraints: a lot of fuss about nothing?

Our paper, "A stochastic implementation of the APCI model for mortality projections", was presented at the Institute and Faculty of Actuaries in October 2017. There was quite a discussion of the role of constraints in the fitting and forecasting of models of mortality. This got me wondering if constraints weren't in fact a red herring. This blog is a short introduction to the results of my investigation into the role, or indeed the non-role, of constraints in modelling and forecasting mortality.

Written by: Iain CurrieTags: Filter information matrix by tag: constraints, Filter information matrix by tag: identifiability, Filter information matrix by tag: Age-Period

Introducing the Product Integral

Of all the actuary's standard formulae derived from the life table, none is more important in survival modelling than:

\[{}_tp_x = \exp\left(-\int_0^t\mu_{s+s}ds\right).\qquad(1)\]

Written by: Angus MacdonaldTags: Filter information matrix by tag: survival models, Filter information matrix by tag: survival probability, Filter information matrix by tag: force of mortality, Filter information matrix by tag: product integral

Fathoming the changes to the Lee-Carter model

Ancient Greek philosophers had a paradox called "The Ship of Theseus"; if pieces of a ship are replaced over time as they wear out until every one of the original components is gone, is it still the same ship? At this point you could be forgiven for thinking (a) that this couldn't possibly be further removed from mortality modelling, and (b) that I had consumed something a lot more potent than tea at breakfast.

Written by: Stephen RichardsTags: Filter information matrix by tag: Lee-Carter, Filter information matrix by tag: P-splines, Filter information matrix by tag: ARIMA

Solid progress

When we previously discussed the progress of immunotherapy within cancer treatment, some of the most exciting results were in the field of leukaemia and melanoma, with progress in other solid cancers lagging somewhat behind.
Written by: Gavin RitchieTags: Filter information matrix by tag: longevity, Filter information matrix by tag: research, Filter information matrix by tag: cancer, Filter information matrix by tag: immunotherapy

From small steps to big results

In survival-model work there is a fundamental relationship between the \(t\)-year survival probability from age \(x\), \({}_tp_x\), and the force of mortality, \(\mu_x\):

\[{}_tp_x = \exp\left(-\int_0^t\mu_{x+s}ds\right).\qquad(1)\]

Written by: Stephen RichardsTags: Filter information matrix by tag: survival probability, Filter information matrix by tag: force of mortality, Filter information matrix by tag: differential equation