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Abstract

The APCI model is a new addition to the canon of mortality forecasting models. It was
introduced by Continuous Mortality Investigation (2016b) as a means of parameterising a de-
terministic targeting model for forecasting, but this paper shows how it can be implemented
as a fully stochastic model. We demonstrate a number of interesting features about the APCI
model, including which parameters to smooth and how much better the model fits to the data
compared to some other, related models. However, this better fit also happens to result in higher
value-at-risk-style capital requirements for insurers, and we explore why this is by looking at
the density of the value-at-risk simulations.

Keywords: mortality projections, APC, Lee-Carter, ARIMA models, Solvency II, VaR, CTE.

1 Introduction
Continuous Mortality Investigation (2016b) introduced a new forecasting model for fitting to
mortality data: the APCI model. This is an extension of the Age-Period-Cohort (APC) model,
but it shares a feature with the model from Lee and Carter (1992). The APCI model was
intended to be used as a means of parameterising a deterministic targeting model for mortality
forecasting. However, it is not the purpose of this paper to discuss the CMI’s approach to
deterministic targeting. Readers interested in a discussion of stochastic v. deterministic projec-
tions, in particular the use of targeting and expert judgement, should consult Booth and Tickle
(2008). Rather, the purpose of this paper is to present a stochastic implementation of the APCI
model for mortality projections, and to compare the performance of this model with various
other models sharing similar structural features.

2 Data
The data used for this paper are the number of deaths dx,y aged x last birthday during each
calendar year y, split by gender. Corresponding mid-year population estimates are also given.
The data therefore lend themselves to modelling the force of mortality, µx+ 1

2
,y+ 1

2
, without further

adjustment. However, for brevity we will drop the 1
2 and just refer to µx,y.

We use data provided by the Office for National Statistics (ONS) for the population of the
United Kingdom (UK). For illustrative purposes we will just use the data for males. As we are
primarily interested in annuity and pension liabilities, we will restrict our attention to ages 50–
104 over the period 1971–2015. Although data are available for earlier years, there are questions
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over the reliability of the population estimates prior to 1971. All death counts were based on
deaths registered in the UK in a particular calendar year and the population estimates for 2002–
2011 are those revised to take account of the 2011 census results. More detailed discussion of
this data set, particularly regarding the current and past limitations of the estimated exposures,
can be found in Cairns et al. (2015).

One consequence of only having data to age 104 is having to decide how to calculate annuity
factors for comparison. One option would be to create an arbitrary extension of the projected
mortality rates up to (say) age 120. Another alternative is to simply look at temporary annuities
to avoid artefacts arising from the arbitrary extrapolation, as used by Richards et al. (2014).
We use the latter approach in this paper, and we therefore calculate expectations of time lived
and continuously paid temporary annuity factors as follows:

ēx,y:105−x =

∫ 105−x

0
tpx,ydt (1)

āx,y:105−x =

∫ 105−x

0
tpx,yv(t)dt (2)

where v(t) is a discount function and tpx,y is the probability a life aged x at outset in year y
survives for t years:

tpx,y = exp

(
−
∫ t

0
µx+s,y+sds

)
(3)

Restricting our calculations to temporary annuities has no meaningful consequences at the
main ages of interest, as shown in Richards et al. (2014). The methodology for approximating
the integrals in equations (1)-(3) is detailed in Appendix A.

For discounting we will use UK government gilt yields, as shown in Figure 1. The broad
shape of the yield curve in Figure 1 is as one would expect, namely with short-term yields lower
than longer-term ones. However, there is one oddity, namely that yields decline for durations
above 24 years.

For v(t) we will follow McCulloch (1971) and McCulloch (1975) and use a spline basis for
representing the yields. Note, however, that McCulloch placed his splines with knot points at
non-equal distances, whereas we will use equally-spaced splines with penalization as per Eilers
and Marx (1996); the plotted points in Figure 1 are sufficiently regular that they look like a
smooth curve already, so no distortion is introduced by smoothing. In this paper the P-spline
smoothing is applied to the yields directly, rather than to the bond prices as in McCulloch
(1971) and McCulloch (1975). The resulting P -spline-smoothed yield curve reproduces all the
main features of Figure 1.

3 Model fitting
We fit models to the data assuming a Poisson distribution for the number of deaths, i.e.

Dx,y ∼ Poisson
(
µx,yE

c
x,y

)
(4)

where Ecx,y denotes the central exposure to risk at age x last birthday in calendar year y. The
Poisson assumption involves assuming that the variance of the death counts is equal to the mean,
which is not true in practice due to over-dispersion. There are several ways of allowing for this
over-dispersion: Li et al. (2009) proposed a gamma-distributed heterogeneity parameter which
varied by age, while Djeundje and Currie (2011) used a single over-dispersion parameter across
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Figure 1: Yields on UK government gilts (coupon strips only, no index-linked gilts)
as at 20th April 2017. Source: United Kingdom Debt Management Office (DMO,
accessed on 21st April 2017).
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all ages and years. However, in this paper we will not make an allowance for over-dispersion for
simplicity, as we are primarily interested in comparing the models for µx,y with each other.

The models we will fit are the following:

Age-Period logµx,y = αx + κy (5)

APC logµx,y = αx + κy + γy−x (6)

Lee-Carter logµx,y = αx + βxκy (7)

APCI logµx,y = αx + βx(y − ȳ) + κy + γy−x (8)

where ȳ is the mean over the years 1971–2015. We have selected these models are they are
related to each other, but other models are considered in Appendix F.

Following Brouhns et al. (2002) we estimate the parameters using the method of maximum
likelihood, rather than the singular-value decomposition of Lee and Carter (1992) or a Bayesian
approach. Our focus is on the practical implementation of stochastic models in industry applica-
tions, so we estimate κ once and then fit a variety of models to κ treating it as an observed time
series. This is preferable to re-estimating κ every time we change its model, as a fully Bayesian
analysis would require. For a discussion of this practical aspect in insurance applications, see
Kleinow and Richards (2016).

The Age-Period, APC and APCI models are all linear in the parameters to be estimated,
so we will use the algorithm of Currie (2013, pp87–92) to fit them. The Currie algorithm is a
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generalisation of the iteratively reweighted least-squares algorithm of Nelder and Wedderburn
(1972) used to fit generalized linear models, but extended to handle models which have both
identifiability constraints and smoothing via the penalised splines of Eilers and Marx (1996);
see Appendix D for an overview. The Lee-Carter model is not linear, but it can be fitted as
two alternating linear models as described by Currie (2013, pp77–80); as with the other three
models, constraints and smoothing via penalised splines are applied during the fitting process.
Smoothing will be applied to αx and βx, but not to κy or γy−x; smoothing of αx and βx reduces
the effective number of parameters and improves the quality of the forecasts by reducing the risk
of mortality rates crossing over at adjacent ages; see Delwarde et al. (2007) and Currie (2013).
The fitting algorithm is implemented in R (R Core Team, 2013).

4 Smoothing
An important part of modelling is choosing which parameters to smooth. This is not merely an
aesthetic consideration — Delwarde et al. (2007) showed how judicious use of smoothing can
improve the quality of forecasts, such as by reducing the likelihood of projected mortality rates
crossing over at adjacent ages in the future. Figure 2 shows the α̂x values for each of the four
models. There is a highly regular, linear-like pattern in each case. We can therefore replace
the fifty-five α̂x estimates with a smooth curve, or we could even replace them with a straight
line for a Gompertz-like version of each model (Gompertz, 1825). This will have the benefit of
reducing the effective dimension of the models.

Figure 3 shows the β̂x values for the Lee-Carter and APCI models. Although the pattern of
the βx values looks different, this arises from the parameterisation of the models. One view of
the APCI model is that it separates the linear component of the time trend in the Lee-Carter
model and makes κ the residual, non-linear part of the time trend, i.e.

βxκy = βx(κy + y − ȳ − y + ȳ) (9)

= βx(y − ȳ) + βx(κy − y + ȳ) (10)

≈ βx(y − ȳ) + κAPCIy (11)

where κAPCIy ≈ βx(κy − y+ ȳ). Now we see why the βx term has a reverse sign under the APCI
model, since in the Lee-Carter model κy has a negative slope but in the APCI model y − ȳ has
a positive slope. It would seem more sensible to have −βx(y − ȳ) in the APCI model to make
the parameterizations match up, but we will stick with the parameterization of Continuous
Mortality Investigation (2017). Figure 3 shows regularity in the βx values, albeit not as strong
as in Figure 2. Again, we can replace the fifty-five β̂x estimates with a smooth curve to reduce
the effective dimension of the Lee-Carter and APCI models. The greater variability of the β̂x
values in Figure 3 shows that smoothing here will make an important contribution to reducing
the likelihood of mortality rates crossing over in the forecast; smoothing of the β̂x terms for
this reason was first proposed by Delwarde et al. (2007). Smoothing the β̂x values will therefore
both reduce the dimension of the model and improve the forecast quality.

In contrast to Figures 2 and 3, Figures 4 and 5 suggest that smoothing κ and γ is less
straightforward. In particular, the values of κ̂ for the APCI model in the lower right panel of
Figure 4 look close to random noise, in which case smoothing κ̂ under the APCI model would
make little sense. In Figure 5 the pattern does not look to be regular and well-behaved enough
to warrant smoothing, even though it is technically feasible. In both cases we prefer to leave
both κ̂ and γ̂ unsmoothed so that we can project them using time-series methods. Note that
Richards and Currie (2009) presented a version of the Lee-Carter model with κ̂ smoothed and
thus projected using the penalty function.
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Figure 2: Parameter estimates α̂x for four unsmoothed models. The αx parameters
play the same role across all four models, i.e. the average log(mortality) value across
1971–2015.
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Table 1 summarises our approach to smoothing the various parameters across the four mod-
els. The impact of the decision to smooth is shown in the contrast between Tables 2 and 3.
We can see that smoothing has little impact on either the forecast time lived or the annuity
factors for the Age-Period, Lee-Carter and APCI models. However, smoothing has led to a
major change in the central forecast in the case of the APC model; this is due to a different
ARIMA model being selected as optimal for the κy terms: ARIMA(0,1,2) for the unsmoothed
APC model, but ARIMA(3,2,0) for the smoothed version. This large change in forecast is an
interesting, if extreme, example of the kind of issues discussed in Kleinow and Richards (2016).
An ARIMA(p,1,q) process models the differences in κy, i.e. a model for improvements, whereas
an ARIMA(p,2,q) process models the rate of change in differences in κy, i.e. accelerating or
decelerating improvements. Smoothing has also improved the fit as measured by the Bayesian
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Figure 3: Parameter estimates β̂x for Lee-Carter and APCI models (both unsmoothed).
Despite the apparent difference, a switch in sign shows that the βx parameters play
analogous roles in the Lee-Carter and APCI models, namely an age-related modulation
of the response in mortality to the time index.
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Table 1: Smoothed and unsmoothed parameters

Model Smoothed Unsmoothed
Age-Period α̂x κ̂y
APC α̂x κ̂y, γ̂y−x
Lee-Carter α̂x, β̂x κ̂y
APCI α̂x, β̂x κ̂y, γ̂y−x

Information Criterion (BIC) — in each case the BIC for a given smoothed model in Table 3
is smaller than the same unsmoothed model in Table 2. This is due to the reduction in the
effective number of parameters from the penalisation of the spline coefficients; see equation (24)
in Appendix D.

One other interesting aspect of Tables 2 and 3 is the dramatic improvement in overall fit
of the APCI model compared to the others. However, it is worth repeating the caution of
Currie (2016) that an “oft-overlooked caveat is that it does not follow that an improved fit
to data necessarily leads to improved forecasts of mortality”. This was also noted in Kleinow
and Richards (2016), where the best-fitting ARIMA process for κ in a Lee-Carter model for
UK males led to the greatest parameter uncertainty in the forecast, and thus higher capital
requirements under a value-at-risk (VaR) assessment. As we will see in Section 7, although the
APCI model fits the data best of the four models considered, it also produces relatively high
capital requirements.

From this point on the models in this paper are smoothed as per Table 1, and the smoothed
models will be denoted (S) to distinguish them from the unsmoothed versions.
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Figure 4: Parameter estimates κ̂y for four unsmoothed models. While κy plays a
similar role in the Age-Period, APC and Lee-Carter models, it plays a very different
role in the APCI model. The APCI κ̂y values are an order of magnitude smaller than
in the other models, and with less of a clear trend. In the APCI model κy is much
more of a residual or left-over term, whose values are therefore strongly influenced by
structural decisions made elsewhere in the model.
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5 Projections
The κ values will be treated throughout this paper as if they are known quantities, but it is
worth noting that this is a simplification. In fact, the κ values are themselves estimates, and
there is thus uncertainty over their true underlying value, especially if the κ values are estimated
from the mortality experience of a small population; see for example Chen et al. (2017). The
true κ can be regarded as a hidden process, since we cannot observe κ directly and can only infer
likely values given the random variation from realised deaths in a finite population. As a result,
the estimated variance of the volatility will be an over-estimate, as the estimated κ values are
subject to two sources of variation. There is a parallel here to the concept of a Kalman filter,
which models an observable process (the estimated κ) which is itself a realisation of a hidden
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Figure 5: Parameter estimates γ̂y−x for APC and APCI models (both unsmoothed).
The γy−x values play analogous roles in the APC and APCI models, yet the values
taken and the shapes displayed are very different.
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Table 2: Expected time lived and annuity factors for unsmoothed models. The yield
curve used to discount future cashflows in the annuity factors is shown in Figure 1.

Model ē70,2015:35 ā70,2015:35 BIC

Age-Period 15.739 13.811 78,667
APC 15.217 13.510 15,916
Lee-Carter 15.196 13.531 13,917
APCI 15.579 13.812 7,140

underlying linear process (the true κ). The Kalman filter therefore allows for two types of noise:
measurement error and volatility. In this paper ARIMA models for κ will be estimated using
R’s arima() function, which uses a Kalman filter to estimate the underlying parameter values,
but assuming that there is no measurement error.

As in Li et al. (2009) we will adopt a two-stage approach to mortality forecasting: (i)
estimation of the time index, κy, and (ii) forecasting that time index. The practical benefits of
this approach over Bayesian methods, particularly with regards to value-at-risk calculations in
life-insurance work, are discussed in Kleinow and Richards (2016). The same approach is used
for γy−x.

Central projections under each of the four models are shown in Figure 8. The discontinuity
between observed and forecast rates for the AP(S) model arises from the lack of age-related mod-
ulation of the κy term — at ages 50–60 there is continuity, at ages 65–75 there is a discontinuity
upwards and at ages 85–90 there is a discontinuity downwards.

6 Constraints and cohort effects
All four of the models in the main body of this paper require identifiability constraints. The ones
used in this paper are detailed in Appendix C. There is a wide choice of alternative constraint
systems. For example, R’s gnm() function deletes sufficient columns from the model matrix until
it is of full rank and the remaining parameters are uniquely estimable and hence identifiable; see
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Table 3: Expected time lived and annuity factors for smoothed models. The yield
curve used to discount future cashflows in the annuity factors is shown in Figure 1.

Model ē70,2015:35 ā70,2015:35 BIC

Age-Period(S) 15.739 13.811 78,527
APC(S) 16.949 14.701 15,770
Lee-Carter(S) 15.199 13.534 13,506
APCI(S) 15.585 13.816 6,724

Figure 6: Parameter estimates κ̂y for four models smoothed according to Table 1.
While κy plays a similar role in the Age-Period, APC and Lee-Carter models, it plays
a very different role in the APCI model. The APCI κ̂y values are an order of magnitude
smaller than in the other models, and with less of a clear trend pattern. In the APCI
model κy is much more of a residual or left-over term, whose values are therefore
strongly influenced by structural decisions made elsewhere in the model.
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Currie (2016). Cairns et al. (2009) imposed weighted constraints on the γy−x parameters that
performed a dual purpose: (i) acting as identifiability constraints, and (ii) imposing behaviour
on γy−x to make forecasting assumptions valid. In explaining their choice of identifiability
constraints, Cairns et al. (2009) stated that their choice ensured “that the fitted γy−x will
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Figure 7: Parameter estimates γ̂y−x for APC(S) and APCI(S) models (both with
smoothed parameters according to Table 1).
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Figure 8: Observed mortality rates at age 70 and projected rates under AP(S), APC(S),
LC(S) and APCI(S) models.
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fluctuate around 0 and will have no discernible linear trend or quadratic curvature”.
However, one consequence of the treatment of corner cohorts described in Appendix B is

that it reduces the number of constraints required to uniquely identify parameters in the fitting
of the APC and APCI models. Following the rationale of Cairns et al. (2009) in imposing
behaviour on γy−x, both we and Continuous Mortality Investigation (2016b) use the full set of
constraints, meaning that both we and Continuous Mortality Investigation (2016b) are using
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over-constrained models. For the data set of UK males used in this paper, this policy of over-
constraint has a much bigger impact on the shape of the parameter values in APCI model than
in the APC model.

The shape of the APC parameters is largely unaffected by over-constraining, as evidenced by
Figure 9. However, it is a matter of concern that the values for κ̂y and γ̂y−x change so much for
the APCI model in Figure 10, at least for this data set and with the choice of cohort constraints.
In the case of κ̂y, the suspicion is that this term is little more than a residual or “left-over” in
the APCI model. This is a result of the βx(y − ȳ) term in the APCI model, which picks up the
trend that for the other models is present in κy.

Figure 9: Parameter estimates κ̂y and γ̂y−x for the APC(S) model: left panels from
over-constrained fit, right panels with minimal constraints. The shape of the κ̂y and
γ̂y−x parameters is largely unaffected by the choice of minimal constraints or over-
constraining.
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The changes in κy and γy−x from a minimal constraint system to an over-constrained system
depend on the nature of the additional constraints that are applied. In the example in Figure 10
it so happens that the constraints are not consistent with γ = 0 for corner cohorts. A different
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sets of constraints, rather than those outlined in Appendix C, would lead to different estimated
parameter values on the left-hand side of Figure 10 and the changes on the right-hand side of
Figure 10 might therefore be made greater or smaller.

When we compare the minimal-constraint fits in Figures 9 and 10, we see that for both
models γy−x approximately follows a quadratic function plus some noise. Due to the additional
constraint for the APCI model, the quadratic trend is removed in Figure 10, but only the linear
trend is removed in Figure 9. It is then unsurprising that the estimated parameter values change
more for the APCI model. However, removing the quadratic trend like this has the advantage of
making the γ process in the APCI model look more like a stationary time series, and therefore
easier to predict or simulate.

Figure 10: Parameter estimates κ̂y and γ̂y−x for APCI(S) model: left panels from
over-constrained fit, right panels with minimal constraints. In contrast to Figure 9,
the shape of the parameter estimates is heavily affected by the choice to over-constrain
the γy−x parameters.
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7 Value-at-Risk assessment
Insurers in the UK and EU are required to use a one-year, value-at-risk (VaR) methodology
to assess capital requirements for longevity trend risk. Under Solvency II a VaR99.5 value
is required, i.e. insurers must hold enough capital to cover 99.5% of possible changes in the
financial impact of mortality forecasts. For a set, S, of possible annuity values arising over the
coming year, the VaR99.5 capital requirement would be:

q(S, 99.5%)− q(S, 50%)

q(S, 50%)
(12)

where q(S, α) is the α-quantile of the set S, i.e. for any randomly selected value in S, s, we have
that Pr (s < q(S, α)) = α. To generate the set S we use the procedure described in Richards
et al. (2014) to assess long-term longevity trend risk within a one-year framework. The results
of this are shown in Table 4.

Table 4: Results of value-at-risk assessment. The 99.5% quantiles are estimated by
applying the estimator from Harrell and Davis (1982) to 5,000 simulations. The ranges
given are the 95% confidence intervals computed from the standard error for the
Harrell-Davis estimate. The yield curve used to discount future cashflows is shown
in Figure 1.

ā70,2015:35 : Capital
Model Median VaR99.5 requirement
AP(S) 13.696 14.263–14.317 4.14–4.54%
APC(S) 14.993 15.192–15.316 1.33–2.15%
LC(S) 13.447 13.740–13.832 2.18–2.86%
APCI(S) 13.692 14.246–14.253 4.05–4.10%

Table 4 shows VaR99.5 capital requirements at age 70, while Figure 11 shows a wide range
of ages. The APCI(S) capital requirements appear less smooth and well-behaved than the other
models, but the VaR99.5 capital requirements themselves do not appear out of line. We note,
however, that the APCI VaR capital requirements exceed the APC(S) and LC(S) values at
almost every age. How a model’s capital requirements vary with age may be an important
consideration for life insurers under Solvency II, either when calculating the risk margin and
particularly for closed (and therefore ageing) portfolios.

To understand how the VaR99.5 capital requirements in Table 4 arise, it is instructive to
consider the smoothed densities of the annuity factors at age 70 for each model in Figure 12.
Here we can see the reason for the higher capital requirement under the APCI model — there
is a relatively wider gap between the median and the 99.5% quantile value.

Table 4 shows the impact of model risk in both the median projected annuity factor and
the capital requirement. This is a reminder that it is important for practical insurance work to
always use a variety of models from different “families”. Indeed, we note that the best estimate
under the APC(S) model in Table 4 is higher than the estimated VaR99.5 reserves for the other
models, a phenomenon also observed by Richards et al. (2014), .

8 Conclusions
The APCI model is an interesting addition to the actuarial toolbox. It shares features with the
Lee-Carter and APC models and — as with all models — it has its own peculiarities. In the case
of the APCI model, the estimated values for κy for UK males are heavily dependent on whether
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Figure 11: VaR99.5 capital-requirement percentages by age for models in Table 4.
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the model is over-constrained or not. With minimal constraints the κy values in the APCI
model for UK male mortality look like a noise process, largely because the linear component of
the time trend is accounted for by the βx(y − ȳ) term. On the face of it this raises questions
over whether κy should even be kept in the model. However, κy captures non-linear curvature
in the trend and period deviations — without it the APCI model would have unrealistically low
uncertainty over its projections. With minimal constraints it is also trickier to find a forecasting
model for the γ process. Either way, with minimal constraints or not, neither κy nor γy−x look
like suitable candidates for smoothing.

In the APCI model the estimated values for γy−x change dramatically according to whether
the model is over-constrained or not. This is not a feature of the APC model, which contains
a similar γy−x term that is relatively robust to the choice to over-constrain or not, at least for
this dataset for UK males.

The APCI model fits the data better than the other models considered in this paper, but
fit to the data is no guarantee of forecast quality. Interestingly, despite having an improved fit
to the data, the APCI model leads to higher capital requirements under a value-at-risk-style
assessment of longevity trend risk than most of the other models considered here. These higher
requirements vary by age, emphasising that insurers must not only consider multiple models
when assessing longevity trend risk, but also the distribution of liabilites by age.
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Figure 12: Densities for annuity factors for age 70 from 2015 for 5,000 simulations
under the models in Table 4. The dashed vertical lines show the medians and the
dotted vertical lines show the Harrell-Davis estimates for the 99.5% quantiles. The
shape of the right-hand tail of the APCI(S) model, and the clustering of values far
from the median, leads to the higher VaR99.5 capital requirements in Table 4.
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Appendices

A Integration
We need to evaluate the integrals in equations (1)–(3). There are several approaches which could
be adopted when the function to be integrated can be evaluated at any point, such as adaptive
quadrature; see Press et al. (2005, p133) for details of this and other methods. However, since
we only have data at integer ages, tpx,y can only be calculated at equally spaced grid points.
Since we cannot evaluate the function to be integrated at any point we like, we maximise our
accuracy by using the following approximations.

For two points separated by one year we use the Trapezoidal Rule:∫ a+1

a
f(x) ≈ 1

2
[f(a) + f(a+ 1)] (13)

For three points spaced one year apart we use Simpson’s Rule:∫ a+2

a
f(x) ≈ 1

3
[f(a) + 4f (a+ 1) + f(a+ 2)] (14)

For four points spaced one year apart we use Simpson’s 3/8 Rule:∫ a+3

a
f(x) ≈ 3

8
[f(a) + 3f(a+ 1) + 3f(a+ 2) + f(a+ 3)] (15)

For five points spaced one year apart we use Boole’s Rule:∫ a+4

a
f(x) ≈ 2

45
[7f(a) + 32f(a+ 1) + 12f(a+ 2) + 32f(a+ 3) + 7f(a+ 4)] (16)

To integrate over n equally spaced grid points we first apply Boole’s Rule as many times as
possible, then Simpson’s 3/8 Rule, then Simpson’s Rule and then the Trapezoidal Rule for any
remaining points at the highest ages.

B Corner cohorts
One issue with the APC and APCI models is that the cohort terms can have widely varying
numbers of observations, as illustrated in Figure 13; at the extremes, the oldest and youngest
cohorts have just a single observation each. A direct consequence of this limited data is that any
estimated γ term for the corner cohorts will have a very high variance, as shown in Figure 14.
Cairns et al. (2009) dealt with this by simply discarding the data in the triangles in Figure 13,
i.e. where a cohort had four or fewer observations. Instead of the oldest cohort having year
of birth ymin − xmax, for example, it becomes cmin = ymin − xmax + 4. Similarly, the youngest
cohort has year of birth cmax = ymax − xmin − 4 instead of ymax − xmin.

There is a drawback to the approach of Cairns et al. (2009), namely it makes it harder to
compare model fits. We typically use an information criterion to compare models, such as the
AIC or BIC. However, this is only valid where the data used are the same. If two models use
different data, then their information criteria cannot be compared. This would be a problem
for comparing the models in Tables 2, 3 and 6, for example, as the fit for an APC or APCI
model couldn’t be compared with the fits for the Age-Period and Lee-Carter models if corner
cohorts were only dropped for some models. One approach would be to make the data the
same by dropping the corner cohorts for the Age-Period and Lee-Carter fits, even though this
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is technically unnecessary. This sort of thing is far from ideal, however, as it involves throwing
away data and would have to be applied to all sorts of other non-cohort-containing models.

Figure 13: Number of observations for each cohort in the data region.
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Figure 14: Standard errors of γ̂y−x for APCI(S) model with and without estimation of
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An alternative approach is to use all the data, but to simply not fit cohort terms in the
corners of Figure 1. This preserves the easy comparability of information criteria between
different model fits. To avoid fitting cohort terms where they are too volatile we simply assume
a value of γ = 0 where there are four or fewer observations. This means that the same data
are used for models with and without cohort terms, and thus that model fits can be directly
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compared via the BIC. Currie (2013) noted that this had the beneficial side effect of stabilising
the variance of the cohort terms which are estimated, as shown in Figure 14.

For projections of γ we forecast not only for the unobserved cohorts, but also for the cohorts
with too few observations, i.e. the cohorts in the dotted triangle in Figure 13.

C Identifiability constraints
The models in equations (5)-(8) all require identifiability constraints. For the Age-Period model
we require one constraint, and we will use the following:∑

y

κy = 0 (17)

For the Lee-Carter model we require two constraints. For one of them we will use the same
constraint as equation (17), together with the usual constraint on βx from Lee and Carter (1992):∑

x

βx = 1 (18)

There are numerous alternative constraint systems for the Lee-Carter model — see Girosi
and King (2008), Renshaw and Haberman (2006) and Richards and Currie (2009) for examples.
The choice of constraint system will affect the estimated parameter values, but will not change
the fitted values of µ̂x,y.

For the APC model we require three constraints. For the first one we will use the same
constraint as equation (17), together with the following two from Cairns et al. (2009):

∑
c

wcγc = 0 (19)∑
c

wc(c− cmin + 1)γc = 0 (20)

where wc is the number of times cohort c appears in the data. Continuous Mortality Investigation
(2016b) uses unweighted cohort constraints, i.e. wc = 1, ∀c, but we prefer to use the constraints
of Cairns et al. (2009), as they give less weight to years of birth with less data.

For the APCI model we require five constraints. We will use equations (17), (19) and (20),
together with the following additional two:

∑
y

(y − ymin)κy = 0 (21)∑
c

wc(c− cmin + 1)2γc = 0 (22)

where equation (22) is the continuation of the pattern in equations (19) and (20) established by
Cairns et al. (2009).

The number of constraints necessary for a linear model can be determined from the rank
of the model matrix. Note that the approach of not fitting γ terms for cohorts with four or
fewer observations, as outlined in Appendix B, makes the constraints involving γ unnecessary for
identifiability. As in Continuous Mortality Investigation (2016b), this means that the APC and
APCI models in this paper are over-constrained, and will thus usually produce poorer fits than
would be expected if a minimal constraint system were adopted. However, over-constraining has
a different impact on the two models: for the APC model it leads to relatively little change in κ,
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as shown in Figure 9. However, for the APCI model κ is little more than a noise process in the
minimally constrained model (see Figure 10), while any pattern in κ from the over-constrained
model appears likely to have been caused by the constraints on γy−x.

D Fitting penalised constrained linear models
The Age-Period, APC and APCI models in equations (5), (6) and (8) are Generalized Linear
Models (GLMs) with identifiability constraints. We smooth the parameters as described in
Table 1. We accomplish the parameter estimation, constraint application and smoothing simul-
taneously using the algorithm presented in Currie (2013). In this section we outline the three
development stages leading up to this algorithm.

Nelder and Wedderburn (1972) defined the concept of a Generalized Linear Model (GLM).
At its core we have the linear predictor, η, defined as follows:

η = Xθ (23)

where X is the model matrix or design matrix and θ is the vector of parameters in the model.
For the model to be identifiable we require that the rank of X equals the length of θ; the
model of Cairns et al. (2006) is just such a mortality model (also referred to as M5 in (Cairns
et al., 2009)). Nelder and Wedderburn (1972) presented an algorithm of iteratively weighted
least squares (IWLS), the details of which vary slightly according to (i) the assumption for the
distribution of deaths and (ii) the link function connecting the linear predictor to the mean of
that distribution. This algorithm finds the values, θ̂, which jointly maximise the (log-)likelihood.

X can also contain basis splines, which introduces the concept of smoothing and penalization
into the GLM framework; see Eilers and Marx (1996). Currie (2013) extended the IWLS algo-
rithm to find the values, θ̂, which jointly maximise the penalised likelihood for some given value
of the smoothing parameter, λ. The optimum value of λ is determined outside the likelihood
framework by minimising an information criterion, such as the BIC:

BIC = Dev + log(n)ED (24)

where n is the number of observations, Dev is the model deviance (McCullagh and Nelder, 1989)
and ED is the effective dimension of the model (Hastie and Tibshirani, 1986). In the single-
dimensional case, as λ increases so does the degree of penalisation. The penalised parameters
therefore become less free to take values different from their neighbours. The result of increas-
ing λ is therefore to reduce the effective dimension of the model, and so equation (24) balances
goodness of fit (measured by the deviance, Dev) against the smoothness of the penalised co-
efficients (measured via the effective dimension, ED). Currie et al. (2004) and Richards et al.
(2006) used such penalised GLMs to fit smooth, two-dimensional surfaces to mortality grids.

We note that penalisation is applied to parameters which exhibit a smooth and continuous
progression, such as the αx parameters in equations (5)–(8). If a second-order penalty is applied,
as λ→∞ the smooth curve linking the parameters becomes ever more like a simple straight line,
i.e. the effective dimension of αx would tend to ED=2. Alternatively, the αx could be replaced
with two parameters for a simple straight-line function of age. In the case of equations (5)–(8)
this would simplify the models to variants of the Gompertz model of mortality(Gompertz, 1825).

Many linear mortality models also require identifiability constraints, i.e. the rank of the
model matrix is less than the number of parameters to be estimated. The Age-Period, APC and
APCI models of the main body of this paper fall into this category: they are all linear, but in
each case rank(X) < length(θ). The gap between rank(X) and length(θ) determines the number
of identifiability constraints required. To enable simultaneous parameter estimation, smoothing
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and application of constraints, Currie (2016) extended the concept of the model matrix, X, to
the augmented model matrix, Xaug, defined as follows:

Xaug =

(
X
H

)
(25)

where H is the constraint matrix with the same number of columns as X and where each row
of H corresponds to one linear constraint. If rank(Xaug) = length(θ), the model is identifiable.
If rank(Xaug) > length(θ), then the model is over-constrained; see Appendix C. Note that the
use of the augmented model matrix, Xaug, here restricts H to containing linear constraints.

In this paper we use a Poisson distribution and a log link for our GLMs; this is the canonical
link function for the Poisson distribution. This means that the fitted number of deaths is the
anti-log of the linear predictor, i.e. Ec×eη. However, Currie (2016) noted that a logit link often
provides a better fit to population data. This would make the fitted number of deaths a logistic
function of the linear predictor, i.e. Ec × eη/(1 + eη). If the logistic link is combined with the
straight-line assumption for αx in equations (5)–(8), this would simplify the models to variants
of the Perks model of mortality; see Richards (2008). Currie (2016, Appendix 1) provides R
code to implement the logit link for the Poisson distribution for the number of deaths in a GLM.
From experience we further suggest specifying good initial parameter estimates to R’s glm()

function when using the logit link, as otherwise there can be problems due to very low exposures
at advanced ages. The start option in the glm() function can be used for this. In Appendix F
we use a logit link to make a M5 Perks model as an alternative to the M5 Gompertz variant
using the log link. As can be seen in Table 6, the M5 Perks model fits the data markedly better
than the other M5 variants.

E Projecting κ and γ
To project κ and/or γ in each of the models, we fit an autoregressive, integrated, moving-average
(ARIMA) model; see Harvey (1981). For κ we fit ARIMA models with a mean, while for γ we
fit ARIMA models without a mean.

The ARIMA parameters, including the mean where required, are estimated using R’s arima()
function. Note that this function uses a Kalman filter to estimate the parameters, and Kalman
filters allow not just for stochastic error but also measurement error; see Harvey (1996). This
situation of two levels of error applies to all the models considered in this paper — κy and
γy−x are unknown quantities observed only indirectly through the mortality process, as allowed
for in the general Kalman filter. However, R’s arima() function estimates ARIMA parameters
assuming that κy and γy−x are known quantities, rather than the estimated quantities that they
really are.

While R’s arima() function returns standard errors, for assessing parameter risk we use the
methodology outlined in Kleinow and Richards (2016). The reason for this is that sometimes
ARIMA parameter estimates can be borderline unstable, and this can lead to wider confidence
intervals for the best-fitting model, as shown in Kleinow and Richards (2016).

To fit an ARIMA model we require to specify the autoregressive order (p), the order of
differencing (d) and the order of the moving average (q). For a given level of differencing we fit
an ARMA(p, q) model and choose the value of p and q by comparing an information criterion; in
this paper we used Akaike’s Information Criterion (Akaike, 1987) with a small-sample correction
(AICc). Choosing the order of differencing, d, is trickier — the data used to fit the ARMA(p, q)
model are different when d = 1 and d = 2. To decide on the ARIMA(p,d,q) model we select the
best ARMA(p,q) model for a given value of d using the AICc, then we pick the ARIMA(p,d,q)
model with the smallest root mean squared error (RMSE) as per Solo (1984).
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The choice of differencing order is thorny: with d = 1 we are modelling mortality improve-
ments, but with d = 2 we are modelling the rate of change of mortality improvements. The
latter can produce very different forecasts, as evidenced by comparing the life expectancy for the
APC(S) model in Table 3 (with d = 2) with the life expectancy for the APC model in Table 2
(with d = 1).

For a value-at-risk assessment of in-force annuities we need to simulate sample paths for
κ. If we want mortality rates in the upper right triangle of Figure 13, then we also need to
simulate sample paths for γ, too. We use the formulae given in Kleinow and Richards (2016)
for bootstrapping the mean (for κ only) and then use these bootstrapped parameter values for
the ARIMA process to include parameter risk in the value-at-risk assessment.

F Other models
In their presentation of a value-at-risk framework for longevity trend risk, Richards et al. (2014)
included some other models not considered in the main body of this paper. For interest we
present comparison figures for members of the Cairns-Blake-Dowd family of stochastic projection
models. We first consider a model sub-family based on Cairns et al. (2006) (M5) as follows:

g(µx,y) = κ0,y + w(x)κ1,y (26)

for some functions g() and w() where κ0 and κ1 form a bivariate random walk with drift. The
three members of the M5 family used here are defined in Table 5, with the results in Tables 6
and 7.

Table 5: Definition of M5 family under equation (26). x̄ represents the mid-point
of the age range, Bj(x) is the jth spline evaluated at x and θj is the corresponding
spline coefficient. Note that the M5 Gompertz and Perks models do not require any
identifiability constraints, but the M5 P -spline model needs two.

Model g(µx,y) w(x)
M5 Gompertz log x− x̄
M5 Perks logit x− x̄
M5 P -spline log

∑
j θjBj(x)

We also consider two further models from Cairns et al. (2009). First, M6:

logµx,y = κ0,y + (x− x̄)κ1,y + γy−x (27)

Model M6 in equation (27) needs two identifiability constraints and we use equations (19) and
(20). As with the M5 family, κ0 and κ1 form a bivariate random walk with drift and γ is
projected using an ARIMA model (as with the APC and APCI models). We also consider M7
from Cairns et al. (2009):

logµx,y = κ0,y + (x− x̄)κ1,y + +
(
(x− x̄)2 − σ̂2

)
κ2,y + γy−x (28)

where σ̂2 = 1
nx

∑nx
i=1(xi− x̄)2. Model M7 in equation (28) needs three identifiability constraints

and we use equations (19), (20) and (22). κ0, κ1 and κ2 form a trivariate random walk with
drift and γ is projected using an ARIMA model (as with the APC and APCI models). As with
the APC and APCI models, M6 and M7 do not need all these constraints with our treatment of
corner cohorts described in Appendix B. Thus, M6 and M7 here are over-constrained, as with
the APC and APCI models.
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Comparing Table 6 with Tables 2 and 3 we can see that the stochastic version of the APCI
model produces similar expected time lived and temporary annuity factors to most models,
apart from the APC and M6 models. This suggests that the best-estimate forecasts under the
APCI model are consistent and not extreme.

Table 6: Expected time lived and annuity factors for unsmoothed models. The yield
curve used to discount future cashflows is shown in Figure 1.

Model ē70,2015:35 ā70,2015:35 BIC

M5 Gompertz 15.519 13.734 46,597
M5 Perks 15.500 13.702 28,950
M5 P-spline 15.423 13.646 33,428
M6 16.960 14.730 7,969
M7 15.514 13.763 7,956

Comparing Table 7 with Table 4 we can see that, while the AP(S) and APCI(S) models
produce the largest VaR99.5 capital requirements at age 70, these are not extreme outliers.

Table 7: Results of value-at-risk assessment for models in Table 6. The 99.5% quan-
tiles are estimated by applying the estimator from Harrell and Davis (1982) to 5,000
simulations. The ranges given are the 95% confidence intervals computed from the
standard error for the Harrell-Davis estimate. The yield curve used to discount future
cashflows is shown in Figure 1.

ā70,2015:35 : Capital
Model Median VaR99.5 requirement
M5 Gompertz 13.836 14.268–14.328 3.13–3.55%
M5 Perks 13.805 14.278–14.345 3.42–3.91%
M5 P-spline 13.747 14.192–14.250 3.24–3.66%
M6 14.925 15.418–15.481 3.31–3.72%
M7 13.867 14.277–14.336 2.95–3.39%

A comparison of Table 4 with the equivalent figures in Richards et al. (2014, Table 4) shows
considerable differences in VaR99.5 capital at age 70. There are two changes between Richards
et al. (2014) and this paper which are driving these differences. The first change is that Richards
et al. (2014) discounted cashflows using a flat 3% per annum, whereas in this paper we discount
cashflows using the yield curve in Figure 1. The second change lies in the data: in this paper
we use UK-wide data for 1971–2015, whereas Richards et al. (2014) used England & Wales data
for 1961–2010. There are three important sub-sources of variation buried in this change in the
data: the first is that the data for 1961–1970 are not as reliable as the data which came later;
the second is that the data used in this paper include revisions to pre-2011 population estimates
following the 2011 census; and the third is that mortality experience after 2010 has been unusual
and is not in line with trend. The combined effect of these changes to the discount function
and the data has led to the VaR99.5 capital requirements at age 70 for the models in Table 7
being around 0.5% less than for the same models in Richards et al. (2014, Table 4). However, a
comparison between Figures 11 and 15 shows that these results are strongly dependent on age.
As in Richards et al. (2014), this means that it is insufficient to consider a few model points
for a value-at-risk assessment — insurer capital requirements not only need to be informed by
different projection models, but they must take account of the age distribution of liabilities.
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Figure 15: VaR99.5 capital requirements by age for models in Table 6.
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G Differences compared to CMI approach
In this paper we present a stochastic implementation of the APCI model proposed by Continuous
Mortality Investigation (2016b). This is the central difference between the APCI model in
this paper and its original implementation in Continuous Mortality Investigation (2016b) and
Continuous Mortality Investigation (2016a). However, there are some other differences of note
and they are listed in this section as a convenient overview.

As per Cairns et al. (2009) our identifiability constraints for γy−x weight each parameter
according to the number of times it appears in the data, rather than assuming equal weight as
in Continuous Mortality Investigation (2016b, p91). As with Continuous Mortality Investigation
(2016b) our APC and APCI models are over-constrained (see Appendix C and Section 6).

For cohorts with four or fewer observed values we do not estimate a γ term — see Ap-
pendix B. In contrast, Continuous Mortality Investigation (2016a, pp27–28) adopts a more
complex approach to corner cohorts, involving setting the cohort term to the nearest available
estimated term.

For smoothing αx and βx we have used the penalised splines of Eilers and Marx (1996), rather
than the difference penalties in Continuous Mortality Investigation (2016b). Our penalties on αx
and βx are quadratic, whereas Continuous Mortality Investigation (2016b) uses cubic penalties.
Unlike Continuous Mortality Investigation (2016b) we do not smooth κy or γy−x. We also
determine the optimal level of smoothing by minimising the BIC, whereas Continuous Mortality
Investigation (2016b) smooths by user judgement.

As described in Section 3, for parameter estimation we use the algorithm presented in Currie
(2013). This means that constraints and smoothing are an integral part of the estimation, rather
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than separate steps applied in Continuous Mortality Investigation (2016b, p15).
Unlike Continuous Mortality Investigation (2016b) we make no attempt to adjust the expo-

sure data.
For projections we use ARIMA models for both κy and γy−x, rather than the deterministic

targeting approach of Continuous Mortality Investigation (2016b, pp31–35). Unlike Continuous
Mortality Investigation (2016b) we do not attempt to break down mortality improvements into
age, period and cohort components, nor do we have a long-term rate to target and nor do we
have any concept of a “direction of travel”(Continuous Mortality Investigation, 2016b, p14).
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Contact

More information including case studies, latest features,

technical documentation and demonstration videos can

be found on our website at www.longevitas.co.uk

Conference House, 152 Morrison Street, 

The Exchange, Edinburgh, EH3 8EB

Telephone 0131 315 4470

Email info@longevitas.co.uk
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