Institute and Faculty of Actuaries

On contemporary mortality models for actuarial use I: practice

Stephen J. Richards and Angus S. Macdonald 11th March 2025

Institute and Faculty of Actuaries

Copyright (c) Longevitas Ltd. All rights reserved. This presentation may be freely distributed, provided it is unaltered and has this copyright notice intact.

- 1. Improved data-quality checking
- 2. A better match to reality
- 3. Modelling rapid changes in risk
- 4. Better management information
- 5. Conclusions
- 6. Acknowledgements

1 Improved data-quality checking

Kaplan and Meier [1958] presented a non-parametric estimate of the survival curve, $_tp_x$:

$$_{t}\hat{p}_{x} = \prod_{t_{i} \le t} \left(1 - \frac{d_{x+t_{i}}}{l_{x+t_{i}^{-}}} \right),$$
 (1)

- x is the outset age for the survival function,
- $\{x + t_i\}$ is the set of distinct ages at death,
- $\bullet \ l_{x+t_i^-}$ is the number of lives a live immediately before age $x+t_i$ and

• d_{x+t_i} is the number of deaths occurring at age $x + t_i$. www.longevitas.co.uk

Kaplan-Meier is a step function

Mortality survival curves for home-reversion plans.

Source: Richards and Macdonald [2024, Figure 19].

Benefit 1: Data quality checks

Source: past consulting work.

Benefit 1: Data quality checks

Source: Richards and Macdonald [2024, Figure 12(a)].

Benefit 1: Data quality checks

Survival curves for UK pension scheme seeking longevity swap:

Source: current consulting work.

- Quickly becomes smooth for even small portfolios.
- Useful for communicating with non-specialists.
- Very useful data-quality check.

- If this is so useful for actuarial work, why didn't actuaries invent it?
- One did Böhmer [1912] at International Congress of Actuaries.
- Besides his academic actuarial work, Böhmer also worked for the German insurance regulator[†].

† DGVFM [1957, page 134].

Böhmer [1912, equation 4]:

$$\mathbf{I} - \gamma_h = \Pi_h \; \frac{A_n}{A_{n-1}}$$

Kaplan and Meier [1958, equation 2b]:

$$\hat{P}(t) = \prod_{j=1}^{k} (n_j'/n_j)$$

An explicitly actuarial method

Böhmer [1912, page 331]:

	E	E_3	Ē	Eı	E2	Ē	E_2	Ē	Eı	Eı
n	I	2	3	4	5	6	7	8	9	10
An	284	283	284	283	282	283	282	283	282	281
A_{n-1}	285	284	283	284	283	282	283	282	283	282

- Event E₁ is death, the others being disability claim (E₂), voluntary withdrawal (E₃) and new entrant (Ē).
- A_{n-1} is the number of lives immediately before an event, A_n is the number afterwards.

•
$$\hat{p}_{48} = \frac{284}{285} \cdot \frac{283}{284} \cdot \frac{282}{283} \cdot \frac{281}{282} = 0.985965$$
, so $\hat{q}_{48} = 0.0014035$.

2 A better match to reality

- A binomial mortality model is like a coin toss.
- A binomial trial must produce one of the two events allowed: death or survival.
- However, observation can be interrupted in real world...

Bulk transfers out

Source: Richards and Macdonald [2024, Figure 3(a)].

Observation can be interrupted mid-year by:

- Legal transfer of liabilities,
- Transfer to new administrator,
- Migration to a new administration system, or
- Commutation of small pensions.

- Survival models handle interrupted observations as *right-censored* records.
- Early exits are treated like survivors, just with an earlier censoring date.

- A binomial mortality model assumes all lives are known at the start of the year.
- No facility for mid-year additions.
- However, new entrants during the year are routine...

Continuous new business

Source: Richards and Macdonald [2024, Figure 3(a)].

- Pension schemes and annuity portfolios are like medical trials:
 - Continuous recruitment (new retirals, surviving spouses).
 - Withdrawals/loss to follow-up (transfers out, commutation).
- Binomial models are not well suited to this... ...but survival models are.

Censoring and left-truncation

3 Modelling rapid changes in risk

Continuous-time modelling gives far greater insight into rapid changes.

Period effects after allowing for age, sex and pension size:

Source: Richards [2022b, Figure 17(a)]. www.longevitas.co.uk

4 Better management information

Benefit 4: Management information

Management information

Mortality hazard using June 2020 extract:

Source: Richards and Macdonald [2024, Figure 15(a)].

- 1. No sign of pandemic mortality by June 2020.
- 2. Problem of delays in reporting deaths (IBNR/OBNR)...

Management information

Estimated proportion of deaths reported for two annuity portfolios:

Source: Richards [2022a, Section 4].

- 1. Estimate the delay function.
- 2. Use this to "gross up" estimate of current mortality.
- 3. Bańbura et al. [2013] call this a "nowcast"...

Management information

Mortality hazard:

Source: Richards and Macdonald [2024, Figure 15].

5 Conclusions

With continuous-time methods actuaries can:

- 1. Improve data-quality checking,
- 2. Match the reality of business processes,
- 3. Model rapid changes in risk, and
- 4. Get timelier management information.

6 Acknowledgements

Thanks to:

- David Raymont of the IFoA for sourcing the original German-language text for Böhmer [1912] and
- Kai Kaufhold of AdRes for sourcing DGVFM [1957].

M. Bańbura, D. Giannone, M. Modugno, and
L. Reichlin. Chapter 4 — Now-Casting and the
Real-Time Data Flow. In Graham Elliott and Allan
Timmermann, editors, *Handbook of Economic*Forecasting, volume 2, pages 195–237. Elsevier, 2013.
doi: 10.1016/B978-0-444-53683-9.00004-9.

P. E. Böhmer. Theorie der unabhängigen Wahrscheinlichkeiten. Presented to the 7th International Congress of Actuaries, Amsterdam, 2-7 September, 1912, pages 327–343, 1912.

- DGVFM. Paul Eugen Böhmer 80 Jahre. Blätter der DGVFM, 3(April 1957):133–134, 1957. doi: 10.1007/BF02808860.
- E. L. Kaplan and P. Meier. Nonparametric estimation from incomplete observations. *Journal of the American Statistical Association*, 53:457–481, 1958.
- S. J. Richards. Real-time measurement of portfolio mortality levels in the presence of shocks and reporting delays. Annals of Actuarial Science, 16(3): 430–452, 2022a. doi: 10.1017/S1748499522000021.

- S. J. Richards. Allowing for shocks in portfolio mortality models. *British Actuarial Journal*, 27:1–22 (with discussion), 2022b. doi: 10.1017/S1357321721000180.
- S. J. Richards and A. S. Macdonald. On Contemporary Mortality Models for Actuarial Use I - Practice. *Presented to the Institute and Faculty of Actuaries* on 24th October 2024, 2024.

Longevitas is a registered trademark:

- in the UK (No. 2434941),
- in the USA (No. 3707314), and
- in the European Union (No. 5854518).

