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Models: ¢-type and pu-type

Forfar, D.O., McCutcheon, J.J. & Wilkie, A.D. (1988). On Graduation by
Mathematical Formula. Journal of the Institute of Actuaries, 115, 1-149.

FMW graduated models using estimators of three parameters:
* g, the one-year probability of death;
* 1, the hazard rate*; or

* m, the central rate of mortality.

* ‘force of mortality’ if you prefer



Models: g-type and p-type
Two different roads to estimation:

1. g-type models:
 Inspired by life table probability q,.
* Obvious statistical model Binomial . ..

e .. orisit?

2. u-type models:
* Inspired by hazard rate p,.
e Obvious statistical model Poisson . ..

e _..Orisit?

Both models have flaws, but those of the Binomial are more serious.



Models: ¢-type and pu-type
Flaws with simple models.

1. g-type Model

e Assumes FE, persons exposed for a whole year BUT ...

e ...some will leave before the year-end ...
e ... while others will join part-way through the year . ..
* ...so we can’t have a Binomial distribution.

2. u-type Model

* Knowing we have M individuals in the study (as we usually do) ...

... the probability of more than M deaths is zero ...

e . ..so we can’t have a Poisson distribution.



Models: g-type and p-type
Flaws with simple models.

1. ¢g-type Model

e Assumes FE, persons exposed for a whole year BUT ...

e ...some will leave before the year-end ...
* ... while others will join part-way through the year ...
* ...so we can’t have a Binomial distribution.

2. u-type Model

* Knowing we have M individuals in the study (as we usually do) ...

... the probability of more than M deaths is zero ...

e ...so we can’t have a Poisson distribution.

‘Fixing’ the Binomial model leads us further into the weeds. Fixing the
Poisson model leads to enlightenment!
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The Lower Branch: The Binomial/Bernoulli Model

Observe M livesi = 1,2,..., M for one year, define ‘indicator’ of death d;:

. 1 if life ¢ dies
' 0 if life ¢ survives

Binomial likelihood is:

Li o« (1—q,)M 24 (g,)>=%
M
— H(l — Qw)l_di (%)di-
1=1

... a product of Bernoulli likelihoods for each life.
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... But THIS Bernoulli Model is Still a Complicated Thing!

Define T, = random lifetime of (z) and consider p, = P|T,, > 1]:

Event {7, > 1} is highly composite:

Pz — 1P«
=  0.5Pz X 0.5Px+0.5
=  0.25Pz X 0.25Px2+0.25 X 0.5Px+0.5

=  0.125Px X 0.125Px+0.125 X 0.25Px+0.25 X 0.5Px+0.5 « - -

= ...and so on, ad infinitum.

(Apologies to Zeno!)

In fact, event {7, > 1} is infinitely composite. Survival happens from
moment to moment. And ¢, = P[T, < 1] is worse.
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The Basic ‘Atom’ — An Infinitesimal Bernoulli Trial

The idea of the hazard rate y; is the infinitesimal:

Pt <T <t+dt|T >t]=pdt+ o(dt) = udt.

For convenience (re)define the indicator:

1ift<Tz' <t—+dt
d; = AN;(t) =
0 otherwise

P[Obs. indt] = (1 — pydt)E=2NO) (4, @t)ANi) = Bernoulli trial.

We have the infinitesimal Bernoulli trial. Not quite right yet, but let’s
pursue it ...
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The Product Integral

n— 00 n n— 00 n

.. : 1\" : 1\" 1
Revision: lim |1+ — —e oOor Ilim (1— — —e .

Let (a;, b;] be the time interval under observation by life 7. Then:

P[Observation;| = H (1 — pu dt)(l—ANi(t))(ut dt)AN%’(t)
(ai,bi]

\ 7
~"

Product Integral

— H (1 — p dt)(l—ANi(t)) x dt)ANi(bi)
(ai,bi]

b;
= exp (/ L dt> (pap, dt)2Ne (0o,

(A
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Data: The Stochastic Switch Y (#)
Define the process Y(t):
1 if alive and under observation at time ¢~

Y'(t) =
0 otherwise

Y*(t) acts as a stochastic ‘switch’ depending on the status of (z).

For example, Y'(¢) y; is a stochastic hazard rate.

) 1 if alive and under observation at time ¢~
Y(t) e = ,
0 otherwise
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Data: The Product Integral Likelihood

Y (t) =1 {Life ¢ alive and under observation} -

(1= Y'(t) pe dt)' =2V () prg dt) 2

MICRO: The ‘atom’ of all Poisson-type likelihoods:

L; = P[Observation,] [T (0= Y7 (t) e dt) 2N (V7 (1) puy dt) AN O

0,00)
—  exp (— / Yi(t) utdt) (Y (bi) o, dt)>N 0
~ - ~~ o P[D:e;th]

P[Survival]
MACRO: Universal Poisson-type likelihood
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Poisson-type Models I: Survival Models
M lives, lifetimes 17,15, ..., T, life i observed on (a;, b;].
12 = Parametric hazard rate on [0, c0).

Y (t) =1 {Life i alive and under observation} -

L=[Tz: = [T IT @=vioul ant=a¥O i) uf dpa™o

? v [0,00)
b’[, . .
= [Lex (— [ viou dt) (V" (bi) pf, dt)y >N,

INDIVIDUAL DATA/COMPLETE OBSERVED LIFETIMES/SURVIVAL MODEL
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Poisson-type Models II: Pseudo-Poisson Models

M lives under observation, life i on (a;, b;].

pr = Constant hazard rate on (z, z + 1].

sz (t) — I{Life ¢ alive and recorded as ‘active’ on (a;, b;] N (x,x + 1]}

TITT 1T @ = Yi(e) g d) = 2N 0N (Vi) o d) 2O

v [0,00)

= [[][ew (_ Lx+1 Y (1) dt) TT (Vi) g de)»Ne®

[0,00)
[T exp (B2) (1)

L = HHL;"L

M known, FS random variable =~ GROUPED DATA/PSEUDO-POISSON
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Bernoulli Family Tree
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Poisson-type Models III: True Poisson Models

Random M lives under observation, life i on (a;, b;].

ps = Constant hazard rate on (x, x + 1].

sz (t) — I{Life i alive and recorded as ‘active’ on (a;, b;| N (z, z + 1]} constrained so that
E¢ is a pre-determined constant.

r=1[1[z HH 1L =) g a)t =SV V2 () gy ) S50

1 [0,00)

r+1 o -
- HHGXP (— / Yo (t) pz dt) [T Vi) g de)2N®
[Texp () (1)

x

M random variable, £ known = GROUPED DATA/TRUE POISSON
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Individual Collective
M =1 M > 1

Timescale A;
M unrestricted
Smooth hazard ¢
Complete Lifetimes

Timescale 1 year

Timescale dz M unrestricted
M deterministic £ E¢ random
Bernoulli(y, dx) Constant hazard p;

Pseudo-Poisson(u} ES)

Timescale 1 year
) M random
4 E¢ deterministic

BERNOULLI
TRIAL

Constant hazard p
Poisson(u} ES)

Timescale 1 year Timescale 1 year
M deterministic =~ —> E, =M
Bernoulli(g,) Binomial(F,, ¢,,)
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