On Contemporary Models for Actuarial Use II: Principles

Angus S Macdonald^a **and Stephen J Richards**^b

Longevity 19, Amsterdam

17 September 2024

^aHeriot-Watt University and the Maxwell Institute for Mathematical Sciences ^bLongevitas Ltd.

- 1. Discrete time \Rightarrow complicated events!
- 2. Breaking down events the Bernoulli 'atom'
- 3. Building up events the product integral
- 4. Data the stochastic switch $Y(t)$
	- Survival models
	- Pseudo-Poisson models
	- True Poisson models

- 1. Discrete time \Rightarrow complicated events!
- 2. Breaking down events the Bernoulli 'atom'
- 3. Building up events the product integral
- 4. Data the stochastic switch $Y(t)$
	- Survival models
	- Pseudo-Poisson models
	- True Poisson models

Forfar, D.O., McCutcheon, J.J. & Wilkie, A.D. (1988). *On Graduation by Mathematical Formula*. Journal of the Institute of Actuaries, **115**, 1–149.

FMW graduated models using estimators of three parameters:

- q_x the one-year probability of death;
- μ_x the hazard rate*; or
- m_x the central rate of mortality.

* 'force of mortality' if you prefer

Two different roads to estimation:

- 1. q**-type models**:
	- Inspired by life table *probability* q_x .
	- Obvious statistical model Binomial . . .
	- \bullet ... or is it?

2. µ**-type models**:

- Inspired by *hazard rate* μ_x .
- Obvious statistical model Poisson . . .
- \bullet ... or is it?

Both models have flaws, but those of the Binomial are more serious.

Flaws with simple models.

- 1. q**-type Model**
	- Assumes E_x persons exposed for a whole year BUT ...
	- . . . some will leave before the year-end . . .
	- . . . while others will join part-way through the year . . .
	- ... so we can't have a Binomial distribution.
- 2. µ**-type Model**
	- Knowing we have M individuals in the study (as we usually do)...
	- \ldots the probability of more than M deaths is zero \ldots
	- ... so we can't have a Poisson distribution.

Flaws with simple models.

- 1. q**-type Model**
	- Assumes E_x persons exposed for a whole year BUT ...
	- . . . some will leave before the year-end . . .
	- ... while others will join part-way through the year ...
	- ... so we can't have a Binomial distribution.
- 2. µ**-type Model**
	- Knowing we have M individuals in the study (as we usually do)...
	- \ldots the probability of more than M deaths is zero \ldots
	- ... so we can't have a Poisson distribution.

'Fixing' the Binomial model leads us further into the weeds. Fixing the Poisson model leads to enlightenment!

The Lower Branch: The Binomial/Bernoulli Model

Observe M lives $i = 1, 2, ..., M$ for one year, define 'indicator' of death d_i :

$$
d_i = \begin{cases} 1 & \text{if life } i \text{ dies} \\ 0 & \text{if life } i \text{ survives} \end{cases}
$$

Binomial likelihood is:

$$
L_i \propto (1-q_x)^{M-\sum d_i} (q_x)^{\sum d_i}
$$

=
$$
\prod_{i=1}^M (1-q_x)^{1-d_i} (q_x)^{d_i}.
$$

. . . a product of **Bernoulli** likelihoods for each life.

. . . **But THIS Bernoulli Model is Still a Complicated Thing!** Define T_x = random lifetime of (*x*) and consider $p_x = P[T_x > 1]$: Event ${T_x > 1}$ is highly composite:

 p_x = $_1p_x$

- $=$ 0.5 $p_x \times 0.5p_{x+0.5}$
- $=$ 0.25 $p_x \times 0.25p_{x+0.25} \times 0.5p_{x+0.5}$
- = $0.125p_x \times 0.125p_{x+0.125} \times 0.25p_{x+0.25} \times 0.5p_{x+0.5} \dots$
- = . . . and so on, *ad infinitum*.

(Apologies to Zeno!)

In fact, event ${T_x > 1}$ is infinitely composite. Survival happens from moment to moment. And $q_x = P[T_x \le 1]$ is worse.

- 1. Discrete time \Rightarrow complicated events!
- 2. Breaking down events the Bernoulli 'atom'
- 3. Building up events the product integral
- 4. Data the stochastic switch $Y(t)$
	- Survival models
	- Pseudo-Poisson models
	- True Poisson models

The Basic 'Atom' — An Infinitesimal Bernoulli Trial

The idea of the hazard rate μ_t is the infinitesimal:

$$
P[t < T \le t + dt \mid T > t] = \mu_t \, dt + o(dt) \approx \mu_t \, dt.
$$

For convenience (re)define the indicator:

$$
d_i = \Delta N_i(t) = \begin{cases} 1 \text{ if } t < T_i < t + dt \\ 0 \text{ otherwise} \end{cases}
$$

P[Obs. in dt] = $(1 - \mu_t dt)^{(1 - \Delta N_i(t))} (\mu_t dt)^{\Delta N_i(t)} =$ Bernoulli trial.

We have the infinitesimal Bernoulli trial. Not quite right yet, but let's pursue it . . .

- 1. Discrete time \Rightarrow complicated events!
- 2. Breaking down events the Bernoulli 'atom'
- 3. Building up events the product integral
- 4. Data the stochastic switch $Y(t)$
	- Survival models
	- Pseudo-Poisson models
	- True Poisson models

The Product Integral

$$
\text{Revision: } \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e \quad \text{or} \quad \lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = e^{-1}.
$$

Let $\left(a_{i},b_{i}\right]$ be the time interval under observation by life $i.$ Then:

$$
P[Observationi] = \prod_{(a_i, b_i]} (1 - \mu_t dt)^{(1 - \Delta N_i(t))} (\mu_t dt)^{\Delta N_i(t)}
$$

\n
$$
= \left(\prod_{(a_i, b_i]} (1 - \mu_t dt)^{(1 - \Delta N_i(t))} \right) \times (\mu_{b_i} dt)^{\Delta N_i(b_i)}
$$

\n
$$
= \exp \left(- \int_{a_i}^{b_i} \mu_t dt \right) (\mu_{b_i} dt)^{\Delta N_i(b_i)}.
$$

- 1. Discrete time \Rightarrow complicated events!
- 2. Breaking down events the Bernoulli 'atom'
- 3. Building up events the product integral
- 4. Data the stochastic switch $Y(t)$
	- Survival models
	- Pseudo-Poisson models
	- True Poisson models

Data: The Stochastic Switch $Y(t)$

Define the process $Y^i(t)$:

$$
Y^{i}(t) = \begin{cases} 1 & \text{if alive and under observation at time } t^{-1} \\ 0 & \text{otherwise} \end{cases}
$$

 $Y^{i}(t)$ acts as a stochastic 'switch' depending on the status of (x) . For example, $Y^i(t)\,\mu_t$ is a stochastic hazard rate.

$$
Y^{i}(t) \mu_{t} = \begin{cases} \mu_{t} & \text{if alive and under observation at time } t^{-} \\ 0 & \text{otherwise} \end{cases}
$$

Data: The Product Integral Likelihood

 $Y^i(t) = I_{\{\text{Life } i \text{ alive and under observation}\}}.$

$$
(1 - Yi(t) \mu_t dt)1-\Delta N_i(t) (Yi(t) \mu_t dt)\Delta N_i(t)
$$

MICRO: The 'atom' of all Poisson-type likelihoods:

$$
L_i = P[Observation_i] = \prod_{[0,\infty)} (1 - Y^i(t) \mu_t dt)^{(1 - \Delta N_i(t))} (Y^i(t) \mu_t dt)^{\Delta N_i(t)}
$$

$$
= \exp\left(-\int_0^\infty Y^i(t) \mu_t dt\right) \underbrace{(Y^i(b_i) \mu_{b_i} dt)^{\Delta N_i(b_i)}}_{P[Death]}.
$$

MACRO: Universal Poisson-type likelihood

Poisson-type Models I: Survival Models

M lives, lifetimes T_1, T_2, \ldots, T_M , life *i* observed on $(a_i, b_i]$.

 μ^{θ}_x $\frac{\theta}{x}$ = Parametric hazard rate on $[0,\infty).$

 $Y^i(t) = I_{\{\text{Life } i \text{ alive and under observation}\}}.$

$$
L = \prod_i L_i = \prod_{i} \prod_{[0,\infty)} (1 - Y^i(t) \mu_t^{\theta} dt)^{(1 - \Delta N_i(t))} (Y^i(t) \mu_t^{\theta} dt)^{\Delta N_i(t)}
$$

=
$$
\prod_i \exp\left(-\int_{a_i}^{b_i} Y^i(t) \mu_t^{\theta} dt\right) (Y^i(b_i) \mu_{b_i}^{\theta} dt)^{\Delta N_i(b_i)}.
$$

INDIVIDUAL DATA/COMPLETE OBSERVED LIFETIMES/SURVIVAL MODEL

Poisson-type Models II: Pseudo-Poisson Models

 M lives under observation, life i on $(a_i, b_i]$.

 μ_x^* x^* = Constant hazard rate on $(x, x + 1]$.

 Y_x^i $X^i_x(t) = I_{\{\text{Life } i \text{ alive and recorded as 'active' on } (a_i, b_i] \cap (x, x+1]\}}.$

$$
L = \prod_{x} L_{x,i}^{*} = \prod_{x} \prod_{i} \prod_{[0,\infty)} (1 - Y_x^i(t) \mu_x^* dt)^{(1 - \Delta N_i(t))} (Y_x^i(t) \mu_x^* dt)^{\Delta N_i(t)}
$$

=
$$
\prod_{x} \prod_{i} \exp\left(-\int_x^{x+1} Y_x^i(t) \mu_x^* dt\right) \prod_{[0,\infty)} (Y_x^i(t) \mu_x^* dt)^{\Delta N_i(t)}
$$

=
$$
\prod_{x} \exp(E_x^c) (\mu_x^*)^{D_x}.
$$

 M known, E_x^c random variable \Rightarrow GROUPED DATA/PSEUDO-POISSON

Poisson-type Models III: True Poisson Models

Random M lives under observation, life i on $(a_i, b_i]$.

 μ_x^* x^* = Constant hazard rate on $(x, x+1]$.

 $\tilde{Y}_x^i(t)=I_{\{\text{Life } i \text{ alive and recorded as 'active' on } (a_i, b_i] \cap (x, x+1]\}}$ constrained so that E_x^c is a pre-determined constant.

$$
L = \prod_x \prod_t L_{x,i}^* \propto \prod_x \prod_{[0,\infty)} (1 - \tilde{Y}_x^i(t) \mu_x^* dt)^{(1 - \Delta N_i(t))} (\tilde{Y}_x^i(t) \mu_x^* dt)^{\Delta N_i(t)}
$$

\n
$$
= \prod_x \prod_t \exp\left(-\int_x^{x+1} \tilde{Y}_x^i(t) \mu_x^* dt\right) \prod_{[0,\infty)} (\tilde{Y}_x^i(t) \mu_x^* dt)^{\Delta N_i(t)}
$$

\n
$$
= \prod_x \exp\left(E_x^c\right) (\mu_x^*)^{D_x}.
$$

 M random variable, E_x^c known \Rightarrow GROUPED DATA/TRUE POISSON

