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Models: q-type and µ-type

Forfar, D.O., McCutcheon, J.J. & Wilkie, A.D. (1988). On Graduation by
Mathematical Formula. Journal of the Institute of Actuaries, 115, 1–149.

FMW graduated models using estimators of three parameters:

• qx the one-year probability of death;

• µx the hazard rate*; or

• mx the central rate of mortality.

* ‘force of mortality’ if you prefer
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Models: q-type and µ-type

Two different roads to estimation:

1. q-type models:

• Inspired by life table probability qx.

• Obvious statistical model Binomial . . .

• . . . or is it?

2. µ-type models:

• Inspired by hazard rate µx.

• Obvious statistical model Poisson . . .

• . . . or is it?

Both models have flaws, but those of the Binomial are more serious.
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Models: q-type and µ-type

Flaws with simple models.

1. q-type Model

• Assumes Ex persons exposed for a whole year BUT . . .

• . . . some will leave before the year-end . . .

• . . . while others will join part-way through the year . . .

• . . . so we can’t have a Binomial distribution.

2. µ-type Model

• Knowing we have M individuals in the study (as we usually do) . . .

• . . . the probability of more than M deaths is zero . . .

• . . . so we can’t have a Poisson distribution.
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Models: q-type and µ-type

Flaws with simple models.

1. q-type Model

• Assumes Ex persons exposed for a whole year BUT . . .

• . . . some will leave before the year-end . . .

• . . . while others will join part-way through the year . . .

• . . . so we can’t have a Binomial distribution.

2. µ-type Model

• Knowing we have M individuals in the study (as we usually do) . . .

• . . . the probability of more than M deaths is zero . . .

• . . . so we can’t have a Poisson distribution.

‘Fixing’ the Binomial model leads us further into the weeds. Fixing the
Poisson model leads to enlightenment!
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The Lower Branch: The Binomial/Bernoulli Model

Observe M lives i = 1, 2, . . . ,M for one year, define ‘indicator’ of death di:

di =

 1 if life i dies

0 if life i survives

Binomial likelihood is:

Li ∝ (1− qx)
M−

∑
di (qx)

∑
di

=
M∏
i=1

(1− qx)
1−di (qx)

di .

. . . a product of Bernoulli likelihoods for each life.
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. . . But THIS Bernoulli Model is Still a Complicated Thing!

Define Tx = random lifetime of (x) and consider px = P[Tx > 1]:

Event {Tx > 1} is highly composite:

px = 1px

= 0.5px × 0.5px+0.5

= 0.25px × 0.25px+0.25 × 0.5px+0.5

= 0.125px × 0.125px+0.125 × 0.25px+0.25 × 0.5px+0.5 . . .

= . . . and so on, ad infinitum.

(Apologies to Zeno!)

In fact, event {Tx > 1} is infinitely composite. Survival happens from
moment to moment. And qx = P[Tx ≤ 1] is worse.
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The Basic ‘Atom’ — An Infinitesimal Bernoulli Trial

The idea of the hazard rate µt is the infinitesimal:

P[t < T ≤ t+ dt | T > t] = µt dt+ o(dt) ≈ µt dt.

For convenience (re)define the indicator:

di = ∆Ni(t) =

 1 if t < Ti < t+ dt

0 otherwise

P[Obs. in dt] = (1− µt dt)
(1−∆Ni(t)) (µt dt)

∆Ni(t) = Bernoulli trial.

We have the infinitesimal Bernoulli trial. Not quite right yet, but let’s
pursue it . . .
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The Product Integral

Revision: lim
n→∞

(
1 +

1

n

)n

= e or lim
n→∞

(
1− 1

n

)n

= e−1.

Let (ai, bi] be the time interval under observation by life i. Then:

P[Observationi] =
∏

(ai,bi]

(1− µt dt)
(1−∆Ni(t))(µt dt)

∆Ni(t)

︸ ︷︷ ︸
Product Integral

=

 ∏
(ai,bi]

(1− µt dt)
(1−∆Ni(t))

× (µbi dt)
∆Ni(bi)

= exp

(
−
∫ bi

ai

µt dt

)
(µbi dt)

∆Ni(bi).
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Data: The Stochastic Switch Y (t)

Define the process Y i(t):

Y i(t) =

 1 if alive and under observation at time t−

0 otherwise

Y i(t) acts as a stochastic ‘switch’ depending on the status of (x).

For example, Y i(t)µt is a stochastic hazard rate.

Y i(t)µt =

 µt if alive and under observation at time t−

0 otherwise
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Data: The Product Integral Likelihood

Y i(t) = I{Life i alive and under observation}.

(1− Y i(t)µt dt)
1−∆Ni(t)(Y i(t)µt dt)

∆Ni(t)

MICRO: The ‘atom’ of all Poisson-type likelihoods:

Li = P[Observationi] =
∏
[0,∞)

(1− Y i(t)µt dt)
(1−∆Ni(t))(Y i(t)µt dt)

∆Ni(t)

= exp

(
−
∫ ∞

0

Y i(t)µt dt

)
︸ ︷︷ ︸

P[Survival]

(Y i(bi)µbi dt)
∆Ni(bi)︸ ︷︷ ︸

P[Death]

.

MACRO: Universal Poisson-type likelihood
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Poisson-type Models I: Survival Models

M lives, lifetimes T1, T2, . . . , TM , life i observed on (ai, bi].

µθ
x = Parametric hazard rate on [0,∞).

Y i(t) = I{Life i alive and under observation}.

L =
∏
i

Li =
∏
i

∏
[0,∞)

(1− Y i(t)µθ
t dt)

(1−∆Ni(t))(Y i(t)µθ
t dt)

∆Ni(t)

=
∏
i

exp

(
−
∫ bi

ai

Y i(t)µθ
t dt

)
(Y i(bi)µ

θ
bi dt)

∆Ni(bi).

INDIVIDUAL DATA/COMPLETE OBSERVED LIFETIMES/SURVIVAL MODEL
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Poisson-type Models II: Pseudo-Poisson Models

M lives under observation, life i on (ai, bi].

µ∗
x = Constant hazard rate on (x, x+ 1].

Y i
x(t) = I{Life i alive and recorded as ‘active’ on (ai, bi] ∩ (x, x + 1]}.

L =
∏
x

∏
i

L∗
x,i =

∏
x

∏
i

∏
[0,∞)

(1− Y i
x(t)µ

∗
x dt)

(1−∆Ni(t))(Y i
x(t)µ

∗
x dt)

∆Ni(t)

=
∏
x

∏
i

exp

(
−
∫ x+1

x

Y i
x(t)µ

∗
x dt

) ∏
[0,∞)

(Y i
x(t)µ

∗
x dt)

∆Ni(t)

=
∏
x

exp
(
Ec

x

) (
µ∗
x

)Dx
.

M known, Ec
x random variable ⇒ GROUPED DATA/PSEUDO-POISSON
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Poisson-type Models III: True Poisson Models

Random M lives under observation, life i on (ai, bi].

µ∗
x = Constant hazard rate on (x, x+ 1].

Ỹ i
x(t) = I{Life i alive and recorded as ‘active’ on (ai, bi] ∩ (x, x + 1]} constrained so that

Ec
x is a pre-determined constant.

L =
∏
x

∏
i

L∗
x,i ∝

∏
x

∏
i

∏
[0,∞)

(1− Ỹ i
x(t)µ

∗
x dt)

(1−∆Ni(t))(Ỹ i
x(t)µ

∗
x dt)

∆Ni(t)

=
∏
x

∏
i

exp

(
−
∫ x+1

x

Ỹ i
x(t)µ

∗
x dt

) ∏
[0,∞)

(Ỹ i
x(t)µ

∗
x dt)

∆Ni(t)

=
∏
x

exp
(
Ec

x

) (
µ∗
x

)Dx
.

M random variable, Ec
x known ⇒ GROUPED DATA/TRUE POISSON
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