Longevity 19, Amsterdam

Some practical benefits of continuous-time methods

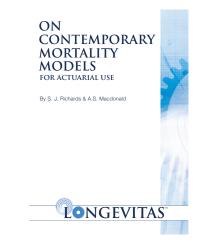
Stephen J. Richards and Angus S. Macdonald 17th September 2024

Copyright © Longevitas Ltd. All rights reserved. This presentation may be freely distributed, provided it is unaltered and has this copyright notice intact.

1. Foreword

2. Benefits of continuous time

3. Modelling rapid changes in risk


4. Conclusions

1 Foreword

Foreword

PDF available at: https://www.longevitas.co.uk/published-paper/contemporary-mortality-models-actuarial-use

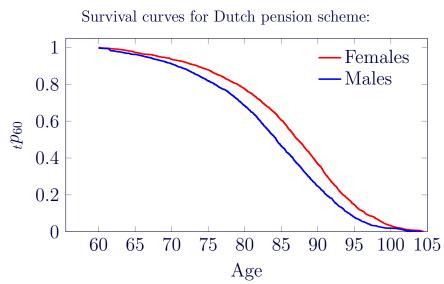
It's not like it's the next Harry Potter

2 Benefits of continuous time **Congevitas**

With continuous-time methods actuaries get:

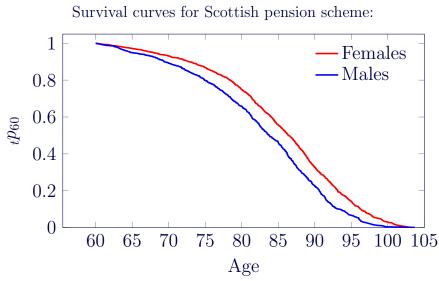
- 1. Improved data-quality checking.
- 2. A better match to reality.
- 3. Modelling of rapid changes in risk.
- 4. Superior management information.

CONGEVITAS


Kaplan and Meier [1958] presented a non-parametric estimate of the survival curve, $_tp_x$:

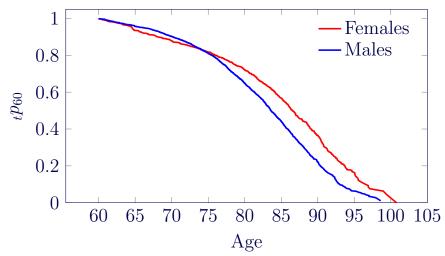
$$_{t}\hat{p}_{x} = \prod_{t_{i} \le t} \left(1 - \frac{d_{x+t_{i}}}{l_{x+t_{i}^{-}}} \right),$$
 (1)

- x is the outset age for the survival function,
- $\{x + t_i\}$ is the set of distinct ages at death,
- $l_{x+t_i^-}$ is the number of lives alive immediately before age $x+t_i$ and


• d_{x+t_i} is the number of deaths occurring at age $x + t_i$. www.longevitas.co.uk

Benefit 1: Data quality checks **Congevitas**

Source: past consulting work.


Benefit 1: Data quality checks **Congevitas**

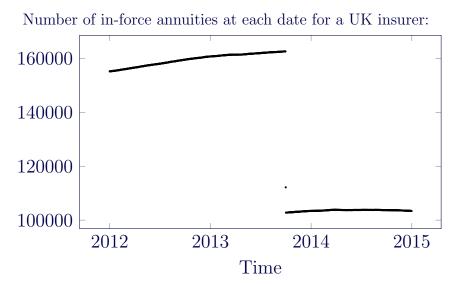
Source: Richards and Macdonald [2024, Figure 12(a)].

Benefit 1: Data quality checks **Congevitas**

Survival curves for UK pension scheme seeking longevity swap:

Source: current consulting work.

Kaplan-Meier estimates are useful:


- As checks for data quality.
- For communicating to non-specialists.

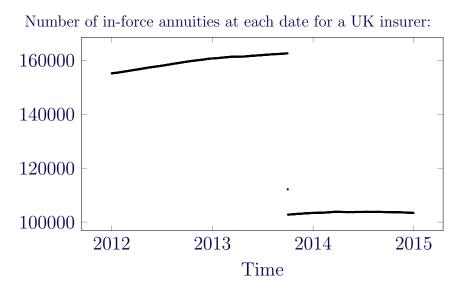
- A binomial mortality model is like a coin toss.
- A binomial trial must produce one of the two events allowed: death or survival.
- However, observation can be interrupted in real world...

Bulk transfers out

Source: Richards and Macdonald [2024, Figure 3(a)].

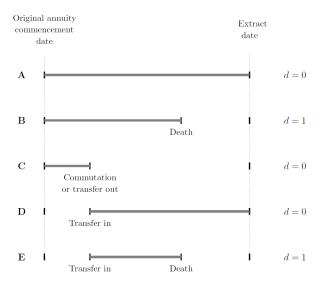
Observation can be interrupted mid-year by:

- Legal transfer of liabilities,
- Transfer to new administrator,
- Migration to a new administration system, or
- Commutation of small pensions.


- Survival models handle interrupted observations as *right-censored* records.
- Early exits are treated like survivors, just with an earlier censoring date.

- A binomial mortality model assumes all lives are known at the start of the year.
- No facility for mid-year additions.
- However, new entrants during the year are routine...

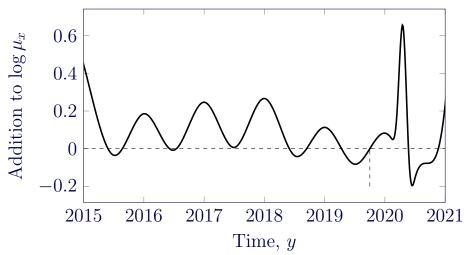
Continuous new business



Source: Richards and Macdonald [2024, Figure 3(a)].

- Pension schemes and annuity portfolios are like medical trials:
 - Continuous recruitment (new retirals, surviving spouses).
 - Withdrawals/loss to follow-up (transfers out, commutation).
- Binomial models are not well suited to this... ...but survival models are.

Censoring and left-truncation **Congevitas**

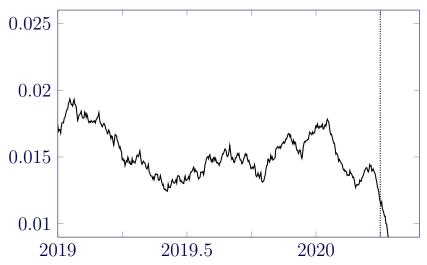

3 Modelling rapid changes in rilongevitas

Continuous-time modelling gives far greater insight into rapid changes.

Mortality levels over time

Period effects after allowing for age, gender and pension size:

Source: Richards [2022b, Figure 17(a)]. www.longevitas.co.uk

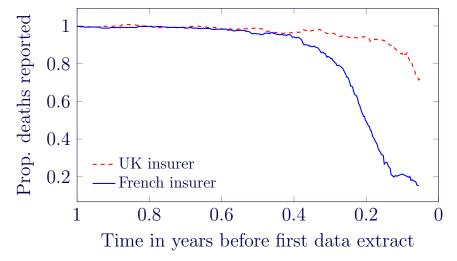

LONGEVITAS

Benefit 4: Management information **Congevitas**

Management information

Mortality hazard using June 2020 extract:

Source: Richards and Macdonald [2024, Figure 15(a)].

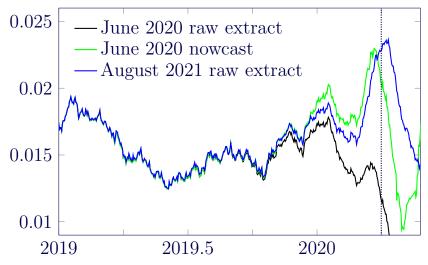


- 1. No sign of pandemic mortality by June 2020.
- 2. Problem of delays in reporting deaths (IBNR/OBNR)...

Management information

Estimated proportion of deaths reported for two annuity portfolios:

Source: Richards [2022a, Section 4].



- 1. Estimate the delay function.
- 2. Use this to "gross up" estimate of current mortality.
- 3. Bańbura et al. [2013] call this a "nowcast"...

Management information

Mortality hazard:

Source: Richards and Macdonald [2024, Figure 15].

4 Conclusions

With continuous-time methods actuaries can:

- 1. Improve data-quality checking,
- 2. Match the reality of business processes,
- 3. Model rapid changes in risk, and
- 4. Get timelier management information.

- M. Bańbura, D. Giannone, M. Modugno, and
 L. Reichlin. Chapter 4 Now-Casting and the
 Real-Time Data Flow. In Graham Elliott and Allan
 Timmermann, editors, *Handbook of Economic Forecasting*, volume 2, pages 195–237. Elsevier, 2013.
 doi: 10.1016/B978-0-444-53683-9.00004-9.
- E. L. Kaplan and P. Meier. Nonparametric estimation from incomplete observations. *Journal of the American Statistical Association*, 53:457–481, 1958.

- S. J. Richards. Real-time measurement of portfolio mortality levels in the presence of shocks and reporting delays. Annals of Actuarial Science, 16(3): 430–452, 2022a. doi: 10.1017/S1748499522000021.
- S. J. Richards. Allowing for shocks in portfolio mortality models. *British Actuarial Journal*, 27:1–22 (with discussion), 2022b. doi: 10.1017/S1357321721000180.
- S. J. Richards and A. S. Macdonald. On Contemporary Mortality Models for Actuarial Use I - Practice. *Presented to the Institute and Faculty of Actuaries* on 24th October 2024, 2024.

Longevitas is a registered trademark:

- in the UK (No. 2434941),
- in the USA (No. 3707314), and
- in the European Union (No. 5854518).

