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Abstract

Most studies of seasonal variation in mortality rely on aggregated death counts at population
level. In this paper we use individual data to present a series of models for different aspects
of seasonal variation. The models are fitted to a variety of international pensioner data sets
and suggest a high degree of commonality across countries with different climates and different
health systems. The power of individual life-history survival modelling allows the detection of
seasonal patterns in even modest-sized portfolios. We measure the tendency for seasonal fluctu-
ations to increase with age, and we again find strong similarities between geographically distinct
populations. We further find that seasonal effects are generally uncorrelated with gender, but
that low-income pensioners can suffer greater seasonal swings than high-income ones. Finally,
we propose a single-parameter measure for the extent to which winter mortality is a spike and
summer mortality is a shallower trough, and show results for a variety of data sets.

Keywords: seasonal mortality, excess winter mortality, survival model.

1 Introduction
It has long been known that human mortality levels vary by season — Figure 1 demonstrates the
durability of this pattern for selected causes of death in Australia, a modern, developed urban nation
with a good healthcare system. We will take the seasonality of mortality as read, but interested
readers can consult Rau [2007, Chapter 2] for a comprehensive introduction to the topic, covering
both historical and modern aspects. From a medical perspective, Boulay et al. [1999] discuss the
physiological aspects and possible causal pathways for chronic heart failure, a cause of death with
pronounced seasonality.

Most approaches to measuring seasonal mortality involve observed death counts at the population
level [Rau, 2007, Chapter 3]. This is due to the large volumes of data that are required to detect
patterns for intervals of time much shorter than a year. In this paper we present an alternative
approach based on the mortality of individuals using survival models [Macdonald et al., 2018]. We
present a series of models for various aspects of seasonal mortality and illustrate them using data
sets of retirees receiving income from occupational pension schemes or insurer annuities. Although
these data sets are orders of magnitude smaller than national populations, the power of modelling
the mortality of individuals, rather than groups, means that seasonal effects are measurable for
even modest-sized pension schemes. A further benefit of using individual data is the rich variety of
additional covariates that becomes available [Richards, 2020, Section 8]. In contrast, grouped data
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Figure 1: Percentage of average daily number of deaths for selected causes in Australia, 1979–1999. Source:
de Looper [2002]. Over the period concerned the population of Australia grew from 14 million to 18 million.
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have to be stratified with respect to such factors, which can severely limit what can be achieved
[Macdonald et al., 2018, Chapter 7.3].

Section 2 describes the data sets used in this paper and Section 3 details the basic form of the
corresponding survival model. Section 4 introduces a simple approach to modelling seasonal mortality
and presents results for a wide variety of pension schemes in different countries. Section 5 considers
modelling seasonal variation by age. Section 6 looks at modelling the shape of seasonal variation, in
particular the tendency for mortality to spike in winter, as opposed to a relatively shallow trough in
summer. Section 7 examines variation by sub-groups, such as gender and income level. Section 8
considers applications, while Section 9 concludes.

2 Data
Figure 2: Seasonality of deaths for data set
UK2 in Table 1 with least-squares fit of co-
sine shape. The vertical scale excludes an
outlier caused by leap years.
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The data sets used in this paper consist of pensioner
records from occupational pension schemes, insurer an-
nuity portfolios or national pension systems. Due to the
financial interest in not paying pensions longer than nec-
essary, such portfolios usually maintain accurate records
of when pensions commence and when they cease. Pen-
sion schemes are specific to a particular employer, and so
pensioners often share an occupational background and in
some cases are geographically concentrated. Due to reg-
ulations and tax-reporting requirements, pension schemes
often have detailed additional information besides date of
birth, gender and pension. Such portfolios are like lon-
gitudinal studies with continuous recruitment: as people
retire, new benefit records are set up. Upon the death of a
former employee, a surviving spouse’s pension might also
be set up. Table 1 gives an overview of the portfolios.
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Table 1: Overview of data in portfolios. The exposure periods vary within the range 1982–2018, i.e. ex-
cluding the period of the COVID-19 pandemic [The Novel Coronavirus Pneumonia Emergency Response
Epidemiology Team, 2020].

Country Portfolio Age range Deaths Description
Canada CANEAST 55–100 20,790 Members of defined-benefit occupational schemes

with known addresses in Québec and the Atlantic
Provinces (NL, NB, NS, PE).

CANWEST 55–100 36,047 Members of defined-benefit occupational schemes
with known Canadian addresses outside Québec
and the Atlantic Provinces.

CAN1 55–100 57,792 Combination of CANEAST and CANWEST
above plus small number with overseas or unknown
addresses.

CAN2 55–100 2,614 Single-employer defined-benefit occupational pen-
sion scheme in CAN1.

Chile CHL 55–95 179,987 Pensioner records from Superintendencia de Pen-
siones for 1982–2013.

England ENG 60–105 19,435 Defined-benefit occupational pension scheme for a
single English local authority.

Spain ESP 55–104 3,822 Some annuities, but mainly recipients of income
from investment bonds. Higher-net-worth individ-
uals concentrated in southern Spanish mainland.

France FRA 55–99 35,665 Insurer portfolio of voluntary top-up pensions for
employees of higher-education institutions around
France.

Kuwait KUW 50–76 10,178 Kuwaiti nationals who are contributors, pensioners
or beneficiaries under the social security programs.
The age range is restricted as birth registration in
Kuwait only began in 1952; see Hill [1975].

Netherlands NLD 50–105 4,896 Single-employer occupational pension scheme in
the private sector.

Scotland SCOT 50–105 3,488 Defined-benefit occupational pension scheme for a
single Scottish local authority, as used in Richards
[2020].

UK UK1 60–95 58,213 Individual annuitants from defined-contribution
personal pensions, widely spread around the UK.

UK2 60–104 60,661 Defined-benefit occupational pension schemes for
six local authorities, including ENG and SCOT
portfolios above.

USA USA1 65–103 32,518 Single-employer defined-benefit occupational pen-
sion scheme for a non-union, blue-collar work-
force concentrated in one geographical region, but
with pension-holders across the US. Dates were
recorded on a year-and-month basis only, resulting
in some imprecision in the seasonal parameters.

USA2 55–100 10,594 Occupational pension scheme in the US.
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An important difference between these data sets and other work on seasonal mortality is that
these are individual records, not grouped counts. Also, no cause-of-death codes are available, so we
are dealing with all-cause mortality, as opposed to the respiratory-only deaths of Eilers et al. [2008]
or the cerebrovascular and respiratory deaths of Marx et al. [2010]. Since these specific causes exhibit
more pronounced seasonal variation (see Figure 1), our all-cause mortality will exhibit more muted
seasonal patterns. Nevertheless, as shown in Figure 2, seasonal variation is still evident.

Another important aspect of individual records is the potential presence of duplicates, i.e. two or
more pensions or annuities paid to the same person. For portfolios CANEAST, CANWEST, CAN1,
ENG, ESP, KUW, SCOT, UK1 and UK2 in Table 1 the records have been deduplicated using the
techniques described in Macdonald et al. [2018, Section 2.5]. Individual records also enable detailed
data-quality checks to be carried out — see Macdonald et al. [2018, Sections 2.3, 2.4, 2.7 and 2.8]. To
avoid risk of age mis-statements distorting model fits — see Newman [2018a] and Newman [2018b]
— any pensioner appearing to exceed age 105 was excluded from the data set. The use of individual
data makes data-quality checking far easier than with grouped counts. For example, the FRA data
set had nearly 700 annuitants appearing to reach age 110; however, since each shared the same date
of birth, it was clear that these records were erroneous.

3 Basic model and fitting

� = −
n∑

i=1
Hxi,yi

(ti) +
n∑

i=1
di log µxi,yi

(1)

Hx,y(t) =
∫ t

0
µx+s,y+sds (2)

To fit a survival model to individual data we maximise
the log-likelihood function in equation (1) [Macdonald
et al., 2018, Section 5.3] for the mortality hazard, µx,y,
at age x at calendar time y. Each life i enters observation
at age xi at calendar time yi and is observed for ti years.
di is an indicator variable taking the value 1 if life i is
observed to die at age xi +ti, or 0 otherwise. Hx,y(t) is the integrated hazard function in equation (2).
Appendix A contains the details of how we performed the numerical integration of the periodic
functions underlying the models.

An important point to note about equation (1) is that it is the log-likelihood for a survival model
with left-truncated data, which is standard for data encountered in actuarial work; see Macdonald
et al. [2018, Section 4.3]. This contrasts with survival models used in medical research, where left-
truncation is relatively uncommon and where likelihoods are usually for non-left-truncated data
[Collett, 2003, Chapter 6].

4 Basic seasonal variation

log µ∗
x,y = log µx,y+eζ cos (2π(y − τ)) (3)

We assume a suitable function for the age- and time-
varying mortality hazard, µx,y, is available. The choice
will depend on the age range under study, but here we
will use the Hermite II model of Richards [2020] for its particular suitability for mortality rates at
post-retirement ages. We start with the cosine extension for seasonal mortality of Richards [2020,
Section 8], as shown in equation (3). τ ∈ [0, 1) represents the proportion of the year after January 1st

when mortality peaks and eζ is the peak additional mortality at that time (on a logarithmic scale).
The two-parameter model for seasonal mortality in equation (3) seeks to simultaneously identify

(i) the amplitude of the average-to-peak seasonal variation (eζ) and (ii) the point after January
1st corresponding to the winter mortality peak (τ). The full trough-to-peak variation is 2eζ . This
contrasts with the two-parameter model of Gemmell et al. [2000], who used both cosine and sine
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functions and where the amplitude and peak were derived from the model parameters; Eilers et al.
[2008, Section 3] similarly used a combination of sine and cosine functions. However, here the
definition of equation (3) forces τ to identify the winter peak, as opposed to the summer trough; we
also assume that the peak is coincident in each of the years covered by a particular data set. Unlike
Eilers et al. [2008, Section 3] we do not attempt to simultaneously estimate a time-trend component,
although this is possible with the Hermite models; see Richards [2020, Section 7]. Equation (3)
specifies an addition to log µx,y, so the mortality hazard is multiplied by a factor fluctuating between
exp(−eζ) and exp(eζ).

Table 2: ζ̂ and τ̂ for pensioner groups in portfolios from
Table 1. Source: own calculations.

Peak mortality:
Excess Peak (i) as %

of mean
(ii) time
of yearPortfolio ζ̂ τ̂

CANEAST -2.06 0.0976 114% 6th Feb
CANWEST -2.47 0.0538 109% 20th Jan
CAN1 -2.34 0.0749 110% 27th Jan
CAN2 -2.04 0.1090 114% 9th Feb
CHL -2.25 0.5560 111% 22nd Jul
ENG -2.02 0.0708 114% 26th Jan
ESP -2.89 0.1494 106% 24th Feb
FRA -2.42 0.0660 109% 25th Jan
KUW -2.36 0.0178 110% 7th Jan
NLD -2.25 0.0524 111% 20th Jan
SCOT -1.88 0.0815 117% 30th Jan
UK1 -2.28 0.0885 111% 2nd Feb
UK2 -1.95 0.0713 115% 27th Jan
USA1 -2.52 0.1420 108% 21st Feb
USA2 -2.63 0.0739 107% 27th Jan

Parameters are estimated by maximis-
ing the log-likelihood in equation (1) and
Table 2 shows the values of ζ̂ and τ̂ for
a variety of pensioner populations. The
high degree of agreement across a wide ge-
ographic range suggests a common under-
lying mechanism — potential physiologi-
cal aspects are discussed in Boulay et al.
[1999]. Kloner et al. [1999] suggested that
the seasonal peak in deaths due to coro-
nary artery disease in Los Angeles County
might be partly due to “factors such as
overindulgence or the stress of the holi-
days”, referring to the Christmas & New
Year period. However, as the inhabitants
of a majority-Muslim country, few Kuwaitis
will be drinking much alcohol or feasting
in celebration of Western Christian holi-
days, yet they have the same seasonality
to their mortality. Furthermore, Chileans
celebrate Christmas at the same time as
the northern-hemisphere countries, and yet their mortality peak occurs six months later. Whatever
underlies the common seasonal pattern in Table 2, it is unlikely to be excessive alcohol consumption
or Christmas over-eating. Table 2 shows that the peak is always during the winter: January or
February in the northern hemisphere and July in the southern hemisphere.

Figure 3: Deviance residuals for CAN1 data set with and
without seasonal term in equation (3).
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How effective can the simple cosine sea-
sonal term in equation (3) be, given the
excess deaths above the peak in Figure 2?
Figure 3 shows that the improvement in
fit is quite marked: the Poisson deviance
residuals [McCullagh and Nelder, 1989] for
the CAN1 data set are much smaller in
magnitude and the pattern is much reduced
after including even just a simplistic cosine
term. Appendix C contains further com-
parisons of residual patterns with and with-
out seasonal terms for the CHL, FRA and
UK2 portfolios.
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5 Seasonal variation by age
Another known facet of seasonal variation in mortality is that it increases with age; see Rau [2007,
pages 33–36, Figures 2.14 and 2.15] and Richards [2020, Figure 13]. We can model this by extending
equation (3) to include an age-dependent seasonal factor as in equation (4):

log µ∗
x,y = log µx,y + eζ+ξ(x−o)/10 cos (2π(y − τ)) (4)

where the new parameter, ξ, measures the extent to which seasonal variation changes with age x.
The factor of 1/10 is to keep the parameters well-scaled. The age offset, o, reduces the correlation
between ζ and ξ that otherwise causes problems in optimising the log-likelihood; in this paper we
use o = 70. Appendix B contains an overview of all the parameters used in this paper.

Since seasonal fluctuations tend to increase with age, we expect a positive value for ξ̂. Table 3
shows the estimated parameters for the five largest portfolios, and Figure 4 shows the resulting
modelled peak winter mortality as a percentage of the average. There is a high degree of commonality
among CAN1, CHL, ENG, UK1 and UK2, but the FRA data set has a noticeably steeper rate of
increase with age.

Table 3: Seasonal parameter estimates for equa-
tion (4) for selected portfolios from Table 1.
Source: own calculations with o = 70.

Excess Age Peak
Portfolio ζ̂ ξ̂ τ̂

CAN1 -2.73 0.291 0.0768
CHL -2.32 0.337 0.5562
ENG -2.36 0.281 0.0671
FRA -3.14 0.604 0.0626
UK1 -2.57 0.310 0.0845
UK2 -2.25 0.251 0.0703

Figure 4: Modelled peak winter mortality by age as
percentage of average. Source: own calculations of
exp(eζ) × 100% from parameter estimates in Table 3.
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6 Shape of seasonal variation
In their review of deaths due to coronary artery disease in Los Angeles County, Kloner et al. [1999]
noted a quadratic U-shape to the pattern of deaths throughout the calendar months. This is echoed
in Figure 2, but note that the pattern is shifted by six months in the southern hemisphere, as shown
in Figure 1. Similarly, Marx et al. [2010] noted “sharp peaks in winter and relatively flat troughs
in summer”. Clearly, seasonal mortality variation has a spikier nature in winter and a shallower,
trough-like shape in summer. We could allow for this using polynomial splines: one for winter and
one for summer, with two blending points a quarter year before and after the winter peak (say).
These splines would be functions of two parameters, one measuring the spikiness of the winter peak
and one measuring the shallowness of the summer trough. However, since both peak and trough can
be expected to move in tandem, ideally we would have a single parameter to achieve both effects
simultaneously.
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log µ∗
x,y = log µx,y + eζ+ξ(x−o)/10s(2π(y − τ)) (5)

s(t) =




ψ �= 0 : 2

e

ψ
2 (1+cos t) − 1

eψ − 1


 − 1

ψ = 0 : cos t

(6)

One way to sharpen winter peaks while simul-
taneously flattening summer troughs is shown in
equations (5) and (6). We have a single param-
eter, ψ, representing the shape of the seasonal
pattern within the year, and which we can esti-
mate from the data. This contrasts with Marx
et al. [2010, Section 2.2], who used individual
parameters for each month. Figure 5: Shape of seasonal effect, s(t), in equation (6)

with different values of ψ.
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Figure 5 shows the range of shapes produced
by different values of ψ in equations (5) and (6).
Note that if ψ should not prove to be signifi-
cantly different from zero, then one could revert
to equation (3) or (4). Also, while it is unlikely
to ever arise in practice, in theory ψ could take a
negative value; this would mean that the summer
trough was sharper than the winter peak. Equa-
tions (5) and (6) are by no means the only pos-
sible single-parameter approach — Appendix D
describes an alternative formula that behaves in
a similar manner.

Table 4: Seasonal parameter estimates for equation (5)
with ξ = 0 for selected portfolios from Table 1. Source:
own calculations.

Excess Peak Shape
Portfolio ζ̂ τ̂ ψ̂ Signature
CAN1 -2.31 0.0719 2.11
CHL -2.23 0.5464 1.93
ENG -2.00 0.0573 2.41
FRA -2.38 0.0662 2.28
KUW -2.16 0.0105 6.02
UK1 -2.26 0.0638 2.37
UK2 -1.95 0.0668 1.02

Tables 4 and 5 show the parameter esti-
mates for several portfolios, where each coun-
try demonstrates a strong degree of peaked-
ness for winter mortality, i.e. ψ >> 0; of par-
ticular note is the very flat summer trough of
the KUW portfolio. A comparison of τ̂ and
ψ̂ between Tables 4 and 5 reveals that esti-
mates for these parameters are little affected
by the presence or absence of the age-related
parameter, ξ, in the model. Checks were made
for CAN1, FRA and UK2, but no significant
variation in shape by age was found. However,
this does not mean that no such variation ex-
ists: shape differences are secondary in strength to age differences (see Table 7) and can only be
detected with either larger portfolios (CAN1, CHL, ENG, FRA, UK1 and UK2) or where the shape
is particularly extreme (KUW).

Table 5: Seasonal parameter esti-
mates for equation (5) for selected
portfolios from Table 1. Source: own
calculations with o = 70.

Excess Age Peak Shape
Portfolio ζ̂ ξ̂ τ̂ ψ̂ Signature
CAN1 -2.66 0.262 0.0753 1.98
CHL -2.29 0.311 0.5486 1.76
ENG -2.29 0.252 0.0565 2.21
FRA -3.06 0.576 0.0644 2.04
UK1 -2.58 0.340 0.0625 2.41
UK2 -2.25 0.247 0.0661 1.00
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7 Seasonal variation by sub-groups
Table 2 shows a high degree of commonality across different countries, albeit with the peak for Chile
shifted by six months for the winter in the souther hemisphere. It also shows that seasonal patterns
are so strong that they can be detected in a portfolio with fewer than 3,000 deaths, provided the
exposure period covers multiple years. In this section we consider variation by sub-groups of each
portfolio.

Section 5 showed that seasonality varies by age, but what of the other classic risk factors of
mortality, such as gender and income level? Such investigations are a challenge for grouped data
due to the problem of stratification: as one partitions the data set into smaller parts, the statistical
procedures lose power when applied to each part separately. [Macdonald et al., 2018, Table 7.1] shows
how even a large data set quickly loses its ability to support a multi-factor model. In contrast, the
ability to use covariates is a particular strength of modelling mortality at the level of the individual.

We found that parameters for seasonal effects are largely the same for men and women. For
example, there was no significant difference between seasonal excess mortality for males and females
in the CAN1, FRA, KUW, NLD, SCOT, UK1 and UK2 datasets, a result echoed by Gemmell et al.
[2000], who found only a moderately higher male susceptibility to seasonal variation for males in
Scotland. Even for the CHL dataset, with over half a million male lives and over 700,000 females,
we found no difference in seasonal excess between men and women. The CAN1 dataset was the only
one to come close to finding a significant interaction between seasonal excess (ζ) and gender, with a
p-value of 0.065.

Figure 6: Seasonality of mortality hazard by
income quintile for data set UK2. Source: own
calculations of modelled rates for males only.
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The picture is different for pension income, how-
ever. The FRA, NLD and UK1 datasets saw only a mild
association between seasonal variation and pension in-
come, and CAN1 not at all. In contrast, for the UK2
dataset those with incomes in the lowest quintile had
statistically significantly higher susceptibility in winter.
Figure 6 shows the extent of modelled mortality dif-
ferentials for males in the poorest and highest income
quintiles; not only do the poorest have the highest mor-
tality, but they also have the highest seasonal variation
as well. This echoes Gemmell et al. [2000, Figure 2],
who found that Social Classes I and II had a lower peak
winter excess than the more-deprived Social Classes III-
V. The most deprived social classes tend to be under-
represented in UK pension schemes, making it all the
more remarkable that the link between seasonal variation and income could be detected in a data
set that is unrepresentative of the wider national population. Note that the pension-income effect
is not a proxy result for the tendency for older pensioners to have smaller pensions, as the seasonal
age parameter, ξ, was also present in the model. Continuous Mortality Investigation [2019, page 16]
noted that the most-deprived deciles of the UK population have a cause-of-death mix skewed towards
causes exhibiting the highest degree of seasonal variation.

Why is different seasonality by income level only evident in the UK2 data set, and not in others?
We believe that the difference lies in the nature of the data sets, specifically their ability to indicate
the likely total retirement income. For example, the FRA data set is for top-up pensions where
the median annual amount was just e1,335 — the stated pension amounts are therefore not a
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wholly reliable guide to total retirement income. Similarly, the UK1 data set is of annuitants from
individual defined-contribution pension savings plans — such annuitants will often have other sources
of retirement income, so again the pension amount is unlikely to be a reliable guide to total retirement
income. Amongst the rather diverse schemes underlying CAN1, mortality varies only modestly by
pension amount; part of the reason might again be due to the pension-plan data only giving an
incomplete picture of total retirement income. For example, Canadian employers might pay top-up
pensions in excess of the limits on tax-deferred pension amounts directly from corporate funds, which
might therefore not be recorded in the pension-administration system. In contrast, the UK2 data set
is for defined-benefit occupational pensions in the public sector — here the pension is more likely to
be the main source of retirement income, and so is a more reliable guide to total income.

8 Applications
The primary application of seasonal modelling is perhaps for social policy and public health —
Figure 6 shows that there is potentially avoidable excess winter mortality amongst the poorest in
the UK. In contrast, seasonal variation in mortality is normally of minor actuarial interest: the
cyclic nature of the pattern means that the impact on reserves for long-term business like pensions
and annuities is usually small, despite the strong statistical significance [Richards, 2020, Section 9].
However, there are three operational applications that make seasonal modelling of use to actuaries
in life insurance or involved in the analysis of pensioner mortality.

The first actuarial application lies in checking data quality. Macdonald et al. [2018, Sections
2.3–2.7] describes the advantages of using individual records, and analysis of seasonal patterns —
or their absence — is a useful additional check of data validity. For example, the estimated shape
parameter for UK2 in Tables 4 and 5 is out of line with the values for UK1, CAN1 and FRA. Further
inspection highlighted some suspicious heaping of dates of death, possibly indicating that these were
dates of bulk updates, rather than actual dates of death. This sort of data anomaly is something
that a writer of a bulk annuity or longevity swap would want to know about before committing to a
pricing basis.

A second actuarial application lies in analysing recent trends, where allowance for seasonal vari-
ation is important to minimise any bias in trend estimation from the choice of exposure period.
Richards [2020, Section 8] cites the example of an insurer looking to analyse the mortality experience
of a pension scheme or other portfolio prior to a bulk-annuity transaction or longevity swap. In such
circumstances, insurers need to use all available information, and stretches of the exposure period
should not have to be discarded just to even up the representation of the seasons. The need to con-
sider seasonal mortality in analysing mortality-improvement rates was specifically highlighted by the
UK insurance regulator in a letter to chief actuaries; see Malik [2019]. The COVID-19 pandemic [The
Novel Coronavirus Pneumonia Emergency Response Epidemiology Team, 2020] may create a more
general need to model mortality levels in the presence of a mortality spike, especially if it becomes
one of the recurrent seasonal respiratory viruses [Monto et al., 2020].

A third actuarial application is operational risk and staffing levels for administering large portfo-
lios, especially rapidly growing ones. For example, an insurer in the bulk-annuity market might take
on a particularly large new liability with tens of thousands of extra lives — the use of a model allow-
ing for the shape of the seasonal mortality variation in Section 6 permits month-by-month planning
of staffing levels in administration areas. Of particular note is the tendency for large transactions
to be concluded at the end of the calendar year, i.e. a month prior to the typical surge in winter
mortality shown in Table 2 for countries in the northern hemisphere.
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9 Conclusions
Survival models with individual data can detect seasonal variation by age amongst retired people,
even in modest-sized pension schemes. The seasonal peak in winter mortality is consistent across a
wide range of territories and populations, with winter mortality typically peaking at 106–117% (late
January and early February in the northern hemisphere, July in the southern). Seasonal patterns
are sufficiently strong that survival models can reliably detect the increase in seasonal variation with
age, which is also consistent across different countries: modelled peak winter mortality rises from
103–108% at age 60 to around 115-130% at age 100. Individual survival models can also detect the
different shape of the winter mortality spike, compared to the shallower summer mortality trough.
The parameters describing seasonal variation are largely uncorrelated with other mortality factors,
such as gender, but there is evidence that seasonal variation is more extreme in the UK for those
with the smallest incomes.
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Appendices
A Implementation

�i = −
[∫ ti

0
µxi+s,yi+sds

]
+ di log µxi+ti,yi+ti

(7)
A general approach to fitting survival models is
presented in Richards [2020, Appendix B]. The
starting point is the log-likelihood, �, defined in
equation (1) and the contribution of a single life i is given in equation (7). The first partial derivative
of equation (7) with respect to a parameter θ is as follows:

∂

∂θ
�i = −

[∫ ti

0
µxi+s,yi+s

(
∂

∂θ
log µxi+s,yi+s

)
ds

]
+ di

∂

∂θ
log µxi+ti,yi+ti

(8)

and the second partial derivative with respect to a pair of parameters, θ1 and θ2, is as follows:

∂2

∂θ1∂θ2
�i = −

[∫ ti

0
µxi+s,yi+s

[
∂2

∂θ1∂θ2
log µxi+s,yi+s +

(
∂

∂θ1
log µxi+s,yi+s

) (
∂

∂θ2
log µxi+s,yi+s

)]
ds

]

+di
∂2

∂θ1∂θ2
log µxi+ti,yi+ti

(9)

In each of equations (7)-(9) we have integrands that fluctuate due to the seasonal component —
Figure 7 shows an example.

Figure 7: Integrands for equations (7)-(9). Source: own calculations for hazard for a male in the poorest
quintile in UK2 data set in Figure 6.
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Figure 7 illustrates why fitting survival models with seasonally varying hazard functions is tricky.
For integrating the mortality hazard (left) and the integrand for any first partial derivative (centre),
we achieve best results by splitting the region of integration into intervals of at most half a year,
aligning on the anniversaries of τ and τ + 0.5 in each calendar year. For the integrand of the second
partial derivative, the right-hand panel of Figure 7 shows that there are actually two complete cycles
within each calendar year, and so for calculating the information matrix it is best to split the region
of integration into quarter-year intervals aligning on the anniversaries of τ , τ + 0.25, τ + 0.5 and
τ + 0.75. Splitting the region of integration has a computation cost when repeated for hundreds
of thousands of lives, so we used parallel processing over 63 threads to reduce run-times [Butenhof,
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1997]. Splitting the region of integration also adds to the risk of truncation errors when adding up
millions of small values, so we use the algorithm of Kahan [1965] to mitigate this when evaluating
the likes of equations (7), (8) and (9).

For the results in this paper we have either used Romberg integration, Clenshaw-Curtis integration
or Gaussian quadrature. A useful test for whether the approximation of integrals was successful or
not is to plot the profile log-likelihood for the parameters. We found that failure to have a cleanly
inverted-U shape was often a sign that the numerical integration was insufficiently rigorous — see
Figure 8 for an example. Note that the converse is not necessarily true — a cleanly inverted U-shape
for the profile log-likelihood is not on its own sufficient evidence that the integration was accurately
performed.

Figure 8: Profile log-likelihoods of of mortality hazards with seasonal effects. Left: adaptive algorithm that
otherwise works well for non-fluctuating hazards. Right: algorithm applied between each seasonal peak and
trough. Source: own calculations.
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B Parameter overview
Table 6 sets out the parameters whose values are estimated from the data.

Table 6: Overview of seasonal parameters.

Parameter Name Description and role of parameter
ξ SeasonalAge Rate of increase by age of peak seasonal mortality; see Section 5.
ζ SeasonalExcess Amplitude of seasonal peak mortality from baseline (log scale); see

Section 4.
τ SeasonalPeak Time of year of peak seasonal (winter) mortality, expressed as frac-

tion of year from 1st January.
ψ SeasonalShape Shape of winter peak and summer trough, with ψ = 0 implying

equal curvature of winter peak and summer trough; see Section 6.
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C Model fit and further research
Table 7: Development of AIC from adding seasonal terms.
Source: own calculations using datasets described in Table 1.

Model CHL FRA UK2
No seasonal terms 1,754,993 332,804 480,181
+cosine terms, ζ & τ -985 -135 -596
+age term, ξ -78 -46 -27
+shape term, ψ -52 -10 -11

1,753,878 332,613 479,547

Table 7 shows the improvements in model
fit achieved from adding the various sea-
sonal terms; we use the information crite-
rion from Akaike [1987] without the small-
sample correction due to the large number
of observations [Macdonald et al., 2018, Ta-
ble 6.1]. There is little difference in the or-
der of adding the age term in equation (4)
or the shape term in equations (5) and (6)
— the amplitude of age-related seasonal
variation is more significant than the shape.

Figure 9 shows how the residuals by month improve considerably from adding all the seasonal
terms. However, Figure 9 also suggests that there is still work to do — the residual for the first
twelfth of the year is still strongly positive. In the case of the UK2 data set, this residual is larger
than can be explained by random variation, suggesting that the model still does not fully capture
the spiky nature of the mortality peak.
Figure 9: Deviance residuals from model fits, showing the better fit from including seasonal terms, albeit
with room for further improvement. Source: model fits from first and fourth rows in Table 7.
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D An alternative approach to seasonal shape
There are many alternative approaches to equation (6) for modelling the shape of seasonal variation.
One equally successful approach we explored was a cubic function centred around the peak that
blended into a quadratic function six months later for summer mortality; we used s((y − τ) mod 1),
with s(t) defined in equation (10).

s(t) =





t ∈ [0, 0.25) : a + bt + ct2 + dt3

t ∈ [0.25, 0.5] : e + ft + gt2

t ∈ (0.5, 1] : s(1 − t)
(10)

As in equation (6), we desire to have a
single parameter, ψ, representing the shape
of the seasonal pattern within the year, and
which we can estimate from the data. If
we use the following coefficients for equa-
tion (6):

a = 1 b = 0 c = −16(1 + 5ψ) d = 256ψ e = 3 − 4ψ f = 16(ψ − 1) g = 16(1 − ψ) (11)

then we have a single winter maximum with s(0) = 1 if ψ > −0.2 and we have a single summer
minimum with s(0.5) = −1 if ψ < 1. If ψ ∈ (−0.2, 1) then s′′(0) < 0 and s′′(0.5) > 0, and s(t) is
C1 continuous at both t = 0.25 and t = 0.75. The left panel of Figure 10 shows that when ψ = 0
then equation (5) is very similar to equation (3). If ψ should prove to be statistically insignificant,
then one could revert to equation (3) or (4). The right panel of Figure 10 shows the range of shapes
produced by different values of ψ.
Figure 10: Shape of seasonal effect, s(t), in equation (10). Left: similarity to cosine approach in equation (3)
when ψ = 0. Right: shape of seasonal effect with different values of ψ.
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