Royal Statistical Society, Edinburgh

Applying survival models to life-office mortality

Stephen Richards $21^{\rm st}$ April 2009

Copyright (c) Stephen Richards. All rights reserved. Electronic versions of this and other freely available papers and presentations can be found at www.richardsconsulting.co.uk

Longevitas

- Used by insurers, reinsurers, investment banks and consulting actuaries
- Mainly UK clients, but some in France and Germany

Overview

- 1. Model structure
- 2. Data
- 3. Risk factors
- 4. Time- and phase-varying factors
- 5. Conclusions and questions

1. Model structure

Background

- Insurers and pension schemes have large liabilities
- Wide and varied demographic risks:
	- mortality
	- longevity
	- critical illness
	- lapse
	- credit risk and banking applications
- Prefer a single, unified approach to all these risks

Source: Longevitas Ltd

Slide 5 www.richardsconsulting.co.uk

Persistency model for personal pensions

Source: Longevitas Ltd

Slide 6 www.richardsconsulting.co.uk

Understanding actuaries — translation table

"central exposed-to-risk" \rightarrow waiting time

"force of mortality" \rightarrow mortality hazard, usually denoted μ_x

"mortality law" \rightarrow functional form for mortality hazard

 $q_x \rightarrow Pr$ (death before age $x + 1$ | alive aged x)

 $t p_x \rightarrow Pr$ (survives to age $x + t$ | alive aged x), i.e. survivor function

Survival models

Time observed, t_i , is shown in grey, while deaths are marked \times .

Slide 8 www.richardsconsulting.co.uk

Survival models

- Time observed, t_i , is *waiting time* (*central exposed-to-risk* to actuaries)
- d_i is the event indicator
- t_i and d_i not independent, so considered as a pair $\{t_i, d_i\}$
- Not all lives are dead, so survival times are *right-censored*
- Lives enter at age $x_i > 0$, so data is *left-truncated*

Shape of mortality hazard

Source: Richards (2008)

Slide 10 www.richardsconsulting.co.uk

$$
\begin{aligned}\n\text{Cox } \mu_x &= e^{\alpha} \\
\text{Weibull } \mu_x &= e^{\alpha} x^{\sigma - 1} \\
\text{Log} - \text{Logistic } \mu_x &= \frac{e^{\alpha + \sigma} x^{e^{\sigma} - 1}}{1 + e^{\alpha} x^{e^{\sigma}}}\n\end{aligned}
$$
\n
$$
\text{Lognormal } \mu_x = \frac{\frac{1}{xe^{\sigma} \sqrt{2\pi}} \exp\left(-\frac{(\log x - \alpha)^2}{2e^{2\sigma}}\right)}{1 - \Phi\left(\frac{\log x - \alpha}{e^{\sigma}}\right)}
$$

Slide 11 www.richardsconsulting.co.uk

Actuarial mortality laws

Gompertz $\mu_x = e^{\alpha + \beta x}$ Perks $\mu_x =$ $e^{\alpha+\beta x}$ $1+e^{\alpha+\beta x}$ Beard $\mu_x =$ $e^{\alpha+\beta x}$ $1+e^{\alpha+\rho+\beta x}$ Makeham $\mu_x = e^{\epsilon} + e^{\alpha + \beta x}$ Makeham – Perks $\mu_x =$ $e^{\epsilon} + e^{\alpha + \beta x}$ $1+e^{\alpha+\beta x}$ Makeham – Beard $\mu_x =$ $e^{\epsilon} + e^{\alpha + \beta x}$ $1+e^{\alpha+\rho+\beta x}$

Slide 12 www.richardsconsulting.co.uk

Problems with left-truncation

- Standard survival models don't cope well with left-truncation
- Revert to first principle with likelihood function, L :

 $L \propto Pr$ (survival to age $x + t$) alive aged x) $=\exp\left(-H_x(t)\right)\mu_x^d$ $x+t$

where $H_x(t)$ is the *integrated hazard function* and d is a binary indicator variable for the event of interest.

• Easier to work with log-likelihood, ℓ :

$$
\ell = -H_x(t) + d\log \mu_{x+t}
$$

Simple analytics

- Work out $H_x(t)$
- Parameter estimates from maximising log-likelihood, ℓ
- Approximate standard errors from inverting information matrix

2. Data

Life-insurance policies

- Longitudinal study with continual recruitment
- Detailed personal data
- High-quality: role of money and legal liability!
- Large-scale: typically tens or hundreds of thousands of policies
- Left-truncated: only adults buy insurance policies

Data preparation

- Data is policy-oriented
- People have multiple policies
- Need to ensure independence assumption
- Need to find *n* independent lives behind *p* dependent policies ($p \ge n$)
- Process of *deduplication*

Wealth and duplicates

Source: Richards and Currie (2009)

Slide 18 www.richardsconsulting.co.uk

Deduplication challenges

Problem: client identifier rarely reliable

Solution: use combination key made up from reliable fields, e.g.

- Date of birth
- Gender
- Surname
- First initial
- Postcode

What's in a name?

Problem: teleserviced data contains mis-spellings of same surname, e.g.

- Ritchie
- Richie
- Richey
- Richey

Solution: use metaphone encoding of names

What's in a name?

Problem: metaphone structured for Anglo-Saxon names. What about

- Muhammed
- Muhammad
- Mohammed?

Solution: use double metaphone encoding of Philips (1990)

3. Risk factors

Traditional risk factors

- Age and gender universally used
- Pension size as proxy for wealth and income

Weakness of pension size

Pension size band

Modern risk factors

- Pension size imperfect proxy for wealth or income
- Postcode used to augment picture
- Postcodes now routinely used for pricing annuities

Slide 26 www.richardsconsulting.co.uk

Postcodes

- 1.6 million residential postcodes
- Each maps to a geodemographic type

Geodemographic example — Mosaic

Source: Experian Ltd.

Slide 28 www.richardsconsulting.co.uk

Geodemographic examples

EH4 $2AB \rightarrow Mosaic$ Type A02 ("Cultural Leadership") EH4 $2AB \rightarrow Acorn$ Type 13 ("Prosperous Professionals") EH4 $2AB \rightarrow P^2$ Type C07 ("Contented Families")

Relative strength of risk factors

4. Time- and phase-varying factors

Extending basic model structure

Basic mortality law is static apart from age, e.g. Gompertz Law is:

 $\mu_x = \exp(\alpha + \beta x)$

Extending basic model structure — I

• Can add duration since contract start, r , e.g.

$$
\mu_x = \exp\left(\alpha + \beta x + \gamma r\right)
$$

Extending basic model structure — II

• Can add calendar time, y, e.g.

$$
\mu_x = \exp\left(\alpha + \beta x + \gamma r + \delta y\right)
$$

Extending basic model structure — III

• Can vary α piece-wise, e.g. for seasonal effects

Example phase risk factor: seasonal mortality

Source: Longevitas Ltd calculations using mortality experience between ages 60–95 for an annuity portfolio. Cox survival model with age, gender and calendar period (season).

Slide 36 www.richardsconsulting.co.uk

5. Conclusions and questions

- Single unified procedure for mortality, longevity and persistency
- Data preparation is important, especially deduplication
- Insured data is ideally suited for survival models
- Geodemographic group is a powerful predictor of mortality
- Preprints available at the front

References

- AKAIKE, H. 1987 Factor analysis and AIC, Psychometrica, 52, 317–333 BEARD, R. E. 1959 Note on some mathematical mortality models. In: The Lifespan of Animals, G. E. W. Wolstenholme and M. O'Connor (eds.), Little, Brown, Boston, 302–311
- Cox, D. R. 1972 Regression models and life tables, Journal of the Royal Statistical Society, Series B, 24, 187–220 (with discussion)
- GOMPERTZ, B. 1825 The nature of the function expressive of the law of human mortality, Philosophical Transactions of the Royal Society, 115, 513–585
- PERKS, W. 1932 On some experiments in the graduation of mortality statistics, Journal of the Institute of Actuaries, 63, 12–40
- PHILIPS, L. 1990 Hanging on the metaphone, Computer Language, 1990, 7 (12), 39–43
- RICHARDS, S. J. 2008 Applying survival models to pensioner mortality data, British Actuarial Journal (to appear)