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Longevitas

• Used by insurers, reinsurers, investment banks and consulting actuaries
• Mainly UK clients, but some in France and Germany
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1. Model structure
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Background

• Insurers and pension schemes have large liabilites
• Wide and varied demographic risks:

— mortality
— longevity
— critical illness
— lapse
— credit risk and banking applications

• Prefer a single, unified approach to all these risks
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Mortality model for annuities

Alive Dead
µµx++t

Source: Longevitas Ltd
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Persistency model for personal pensions

Active

Dead

Paid−up

Transferred

µµx++t
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µµx++t
p

ρρx++t

ππx++t

ττx++t
a

ττx++t
p

Source: Longevitas Ltd
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Understanding actuaries — translation table

“central exposed-to-risk” → waiting time
“force of mortality” → mortality hazard, usually denoted µx

“mortality law” → functional form for mortality hazard
qx → Pr (death before age x+ 1 | alive aged x)

tpx → Pr (survives to age x+ t | alive aged x), i.e. survivor function
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Survival models

xi xi ++ ti

di == 0

X

X
xi xi ++ ti

di == 1

Time observed, ti, is shown in grey, while deaths are marked ×.
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Survival models
• Time observed, ti, is waiting time (central exposed-to-risk to actuaries)
• di is the event indicator
• ti and di not independent, so considered as a pair {ti, di}
• Not all lives are dead, so survival times are right-censored
• Lives enter at age xi > 0, so data is left-truncated
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Shape of mortality hazard

Age

lo
g 

(f
or

ce
 o

f m
or

ta
lit

y)

30 40 50 60 70 80 90 100 110

−7

−6

−5

−4

−3

−2

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●●●
●●

●●

●
●●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●●

●
●

●●●

●●●●
●●●

●

●
●●

●

●
●

Fitted force of mortality
Observed force of mortality

Source: Richards (2008)
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Traditional survival models

Cox µx = eα

Weibull µx = eαxσ−1

Log − Logistic µx =
eα+σxe

σ−1

1 + eαxeσ

Lognormal µx =

1
xeσ
√

2π
exp

(
− (log x− α)2

2e2σ

)
1− Φ

( log x− α
eσ

)
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Actuarial mortality laws

Gompertz µx = eα+βx

Perks µx =
eα+βx

1 + eα+βx

Beard µx =
eα+βx

1 + eα+ρ+βx

Makeham µx = eε + eα+βx

Makeham− Perks µx =
eε + eα+βx

1 + eα+βx

Makeham− Beard µx =
eε + eα+βx

1 + eα+ρ+βx
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Problems with left-truncation
• Standard survival models don’t cope well with left-truncation
• Revert to first principle with likelihood function, L:

L ∝ Pr (survival to age x+ t|alive aged x)

= exp (−Hx(t))µdx+t

where Hx(t) is the integrated hazard function and d is a binary indicator
variable for the event of interest.
• Easier to work with log-likelihood, `:

` = −Hx(t) + d logµx+t
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Simple analytics

• Work out Hx(t)
• Parameter estimates from maximising log-likelihood, `
• Approximate standard errors from inverting information matrix
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2. Data
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Life-insurance policies

• Longitudinal study with continual recruitment
• Detailed personal data
• High-quality: role of money and legal liability!
• Large-scale: typically tens or hundreds of thousands of policies
• Left-truncated: only adults buy insurance policies

Slide 16 www.richardsconsulting.co.uk



Data preparation

• Data is policy-oriented
• People have multiple policies
• Need to ensure independence assumption
• Need to find n independent lives behind p dependent policies (p ≥ n)
• Process of deduplication
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Wealth and duplicates

Size band (5% of lives per band)
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Source: Richards and Currie (2009)
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Deduplication challenges

Problem: client identifier rarely reliable
Solution: use combination key made up from reliable fields, e.g.

— Date of birth
— Gender
— Surname
— First initial
— Postcode
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What’s in a name?
Problem: teleserviced data contains mis-spellings of same surname, e.g.

— Ritchie
— Richie
— Richey
— Richey

Solution: use metaphone encoding of names
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What’s in a name?
Problem: metaphone structured for Anglo-Saxon names. What about

— Muhammed
— Muhammad
— Mohammed?

Solution: use double metaphone encoding of Philips (1990)
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3. Risk factors
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Traditional risk factors
• Age and gender universally used
• Pension size as proxy for wealth and income
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Weakness of pension size

Pension size band
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Modern risk factors
• Pension size imperfect proxy for wealth or income
• Postcode used to augment picture
• Postcodes now routinely used for pricing annuities
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Anatomy of a UK postcode
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Postcodes
• 1.6 million residential postcodes
• Each maps to a geodemographic type
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Geodemographic example — Mosaic

Source: Experian Ltd.
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Geodemographic examples

EH4 2AB → Mosaic Type A02 (“Cultural Leadership”)
EH4 2AB → Acorn Type 13 (“Prosperous Professionals”)
EH4 2AB → P2 Type C07 (“Contented Families”)
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Relative strength of risk factors
Parameter Estimate Z-value p-value

Age 0.117945 145.29 0
Gender.M 0.403402 31.32 0
Intercept -12.6977 -186.12 0
Mosaic.B 0.166925 4.97 0
Mosaic.C 0.121779 5.11 0
Mosaic.D 0.341533 13.53 0
Mosaic.E 0.269638 6.35 0
Mosaic.F 0.559107 15.41 0
Mosaic.G 0.52112 17.17 0
Mosaic.H 0.414819 16.25 0
Mosaic.I 0.355807 12.11 0
Mosaic.J 0.0731409 2.84 0.0045
Mosaic.K 0.0901384 2.41 0.0159
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4. Time- and phase-varying factors
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Extending basic model structure

Basic mortality law is static apart from age, e.g. Gompertz Law is:

µx = exp (α+ βx)
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Extending basic model structure — I

• Can add duration since contract start, r, e.g.

µx = exp (α+ βx+ γr)
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Extending basic model structure — II

• Can add calendar time, y, e.g.

µx = exp (α+ βx+ γr + δy)
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Extending basic model structure — III

• Can vary α piece-wise, e.g. for seasonal effects

Slide 35 www.richardsconsulting.co.uk



Example phase risk factor: seasonal mortality
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Source: Longevitas Ltd calculations using mortality experience between ages 60–95 for an annuity
portfolio. Cox survival model with age, gender and calendar period (season).
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5. Conclusions and questions

• Single unified procedure for mortality, longevity and persistency
• Data preparation is important, especially deduplication
• Insured data is ideally suited for survival models
• Geodemographic group is a powerful predictor of mortality
• Preprints available at the front
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