Royal Statistical Society, Edinburgh

Applying survival models to life-office mortality

Stephen Richards 21^{st} April 2009

Copyright (c) Stephen Richards. All rights reserved. Electronic versions of this and other freely available papers and presentations can be found at www.richardsconsulting.co.uk

Longevitas

- Used by insurers, reinsurers, investment banks and consulting actuaries
- Mainly UK clients, but some in France and Germany

Overview

- 1. Model structure
- 2. Data
- 3. Risk factors
- 4. Time- and phase-varying factors
- 5. Conclusions and questions

1. Model structure

Background

- Insurers and pension schemes have large liabilities
- Wide and varied demographic risks:
 - mortality
 - longevity
 - critical illness
 - lapse
 - credit risk and banking applications
- Prefer a single, unified approach to all these risks

Source: Longevitas Ltd

Slide 5

Persistency model for personal pensions

Source: Longevitas Ltd

Slide 6

Understanding actuaries — translation table

"central exposed-to-risk" \rightarrow waiting time

"force of mortality" \rightarrow mortality hazard, usually denoted μ_x

"mortality law" \rightarrow functional form for mortality hazard

 $q_x \to \Pr(\text{death before age } x + 1 \mid \text{alive aged } x)$

 $_t p_x \to \Pr(\text{survives to age } x + t \mid \text{alive aged } x), \text{ i.e. survivor function}$

Survival models

Time observed, t_i , is shown in grey, while deaths are marked \times .

Survival models

- Time observed, t_i , is waiting time (central exposed-to-risk to actuaries)
- d_i is the event indicator
- t_i and d_i not independent, so considered as a pair $\{t_i, d_i\}$
- Not all lives are dead, so survival times are *right-censored*
- Lives enter at age $x_i > 0$, so data is *left-truncated*

Shape of mortality hazard

Source: Richards (2008)

Slide 10

$$Cox \ \mu_x = e^{\alpha}$$
Weibull
$$\mu_x = e^{\alpha} x^{\sigma-1}$$
Log - Logistic
$$\mu_x = \frac{e^{\alpha + \sigma} x^{e^{\sigma} - 1}}{1 + e^{\alpha} x^{e^{\sigma}}}$$
Lognormal
$$\mu_x = \frac{\frac{1}{xe^{\sigma}\sqrt{2\pi}} \exp\left(-\frac{(\log x - \alpha)^2}{2e^{2\sigma}}\right)}{1 - \Phi\left(\frac{\log x - \alpha}{e^{\sigma}}\right)}$$

Actuarial mortality laws

Gompertz
$$\mu_x = e^{\alpha + \beta x}$$

Perks $\mu_x = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$
Beard $\mu_x = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$
Makeham $\mu_x = e^{\epsilon} + e^{\alpha + \beta x}$
Makeham - Perks $\mu_x = \frac{e^{\epsilon} + e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$
Makeham - Beard $\mu_x = \frac{e^{\epsilon} + e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$

www.richards consulting.co.uk

Slide 12

Problems with left-truncation

- Standard survival models don't cope well with left-truncation
- Revert to first principle with likelihood function, L:

 $L \propto \Pr(\text{survival to age } x + t | \text{alive aged } x))$ = $\exp(-H_x(t)) \mu_{x+t}^d$

where $H_x(t)$ is the *integrated hazard function* and d is a binary indicator variable for the event of interest.

• Easier to work with log-likelihood, ℓ :

$$\ell = -H_x(t) + d\log\mu_{x+t}$$

Simple analytics

- Work out $H_x(t)$
- \bullet Parameter estimates from maximising log-likelihood, ℓ
- Approximate standard errors from inverting information matrix

2. Data

Life-insurance policies

- Longitudinal study with continual recruitment
- Detailed personal data
- High-quality: role of money and legal liability!
- Large-scale: typically tens or hundreds of thousands of policies
- Left-truncated: only adults buy insurance policies

Data preparation

- Data is policy-oriented
- People have multiple policies
- Need to ensure independence assumption
- Need to find n independent lives behind p dependent policies $(p \ge n)$
- Process of *deduplication*

Wealth and duplicates

Source: Richards and Currie (2009)

Slide 18

Deduplication challenges

Problem: client identifier rarely reliable

Solution: use combination key made up from reliable fields, e.g.

- Date of birth
- Gender
- Surname
- First initial
- Postcode

What's in a name?

Problem: teleserviced data contains mis-spellings of same surname, e.g.

- Ritchie
- Richie
- Richey
- Richey

Solution: use metaphone encoding of names

What's in a name?

Problem: metaphone structured for Anglo-Saxon names. What about

- Muhammed
- Muhammad
- Mohammed?

Solution: use double metaphone encoding of Philips (1990)

3. Risk factors

Traditional risk factors

- Age and gender universally used
- Pension size as proxy for wealth and income

Weakness of pension size

Modern risk factors

- Pension size imperfect proxy for wealth or income
- Postcode used to augment picture
- Postcodes now routinely used for pricing annuities

Postcodes

- 1.6 million residential postcodes
- Each maps to a *geodemographic type*

Geodemographic example — Mosaic

Source: Experian Ltd.

Slide 28

Geodemographic examples

EH4 2AB \rightarrow Mosaic Type A02 ("Cultural Leadership") EH4 2AB \rightarrow Acorn Type 13 ("Prosperous Professionals") EH4 2AB \rightarrow P² Type C07 ("Contented Families")

Relative strength of risk factors

	Parameter	Estimate	Z-value	p-value
_	Age	0.117945	145.29	0
	Gender.M	0.403402	31.32	0
	Intercept	-12.6977	-186.12	0
	Mosaic.B	0.166925	4.97	0
	Mosaic.C	0.121779	5.11	0
	Mosaic.D	0.341533	13.53	0
	Mosaic.E	0.269638	6.35	0
	Mosaic.F	0.559107	15.41	0
	Mosaic.G	0.52112	17.17	0
	Mosaic.H	0.414819	16.25	0
	Mosaic.I	0.355807	12.11	0
	Mosaic.J	0.0731409	2.84	0.0045
	Mosaic.K	0.0901384	2.41	0.0159

4. Time- and phase-varying factors

Extending basic model structure

Basic mortality law is static apart from age, e.g. Gompertz Law is:

 $\mu_x = \exp\left(\alpha + \beta x\right)$

Extending basic model structure — I

• Can add duration since contract start, r, e.g.

$$\mu_x = \exp\left(\alpha + \beta x + \gamma r\right)$$

Extending basic model structure — II

• Can add calendar time, y, e.g.

$$\mu_x = \exp\left(\alpha + \beta x + \gamma r + \delta y\right)$$

Extending basic model structure — III

• Can vary α piece-wise, e.g. for seasonal effects

Example phase risk factor: seasonal mortality

Source: Longevitas Ltd calculations using mortality experience between ages 60–95 for an annuity portfolio. Cox survival model with age, gender and calendar period (season).

Slide 36

5. Conclusions and questions

- Single unified procedure for mortality, longevity and persistency
- Data preparation is important, especially deduplication
- Insured data is ideally suited for survival models
- Geodemographic group is a powerful predictor of mortality
- Preprints available at the front

References

- AKAIKE, H. **1987** Factor analysis and AIC, Psychometrica, **52**, 317–333 BEARD, R. E. **1959** Note on some mathematical mortality models. In: The Lifespan of Animals, G. E. W. Wolstenholme and M. O'Connor (eds.), Little, Brown, Boston, 302–311
- Cox, D. R. **1972** Regression models and life tables, Journal of the Royal Statistical Society, Series B, **24**, 187–220 (with discussion)
- GOMPERTZ, B. **1825** The nature of the function expressive of the law of human mortality, Philosophical Transactions of the Royal Society, **115**, 513–585
- PERKS, W. **1932** On some experiments in the graduation of mortality statistics, Journal of the Institute of Actuaries, **63**, 12–40
- PHILIPS, L. **1990** Hanging on the metaphone, Computer Language, 1990, **7** (12), 39–43
- RICHARDS, S. J. **2008** Applying survival models to pensioner mortality data, British Actuarial Journal (to appear)