Life Convention, Amsterdam

Modelling persistency risk

Stephen Richards 10th November 2008

Copyright (c) Stephen Richards. All rights reserved. Electronic versions of this and other freely available papers and presentations can be found at www.richardsconsulting.co.uk

Overview

Same processes for all decrements:

- Mortality
- Critical Illness
- Lapse
- PUP

Model

• Variables often correlated

e.g. product code and time of sale

- Need to separate effects of each
- Need statistical model to measure *independent* effects

Data preparation

- Statistical models demand independent observations
- People have multiple policies
- Decide handling strategy:
 - overdispersion parameter
 - deduplication

Mortality model for annuities

Source: Longevitas Ltd.

Slide 4

www.richards consulting.co.uk

Model structure

- Two-state model without return
- For mortality can model continuously or discretely i.e. model μ_x or q_x

Persistency model for personal pensions

Source: Longevitas Ltd.

Slide 6

www.richards consulting.co.uk

Model structure

- Four-state model with return
- For multiple-state models, most sensible option is continuous-time as recommended by CMIB Technical Standards Working Party

Model structure

- Transfer rate, τ , modelled separately by state
- Transfer rates and risk factors different for each:
 - τ^a for direct transfer from active state
 - τ^p for direct transfer from paid-up state

Risk factors

Categories:

- Gender
- Commission type
- Premium frequency
- Product code
- Branch
- Employment status

Risk factors

Continuous:

- Age
- Duration
- Year

Risk factors

Phases:

- Select period
- Calendar period

Example phase risk factor: seasonal mortality

Source: Longevitas Ltd calculations using mortality experience between ages 60–95 for an annuity portfolio. Cox survival model with age, gender and calendar period (season).

Slide 12

www.richardsconsulting.co.uk

Summary

- Single unified procedure for persistency, mortality etc
- Data preparation, especially deduplication
- Continuous-time models best
- Same risk can have different drivers depending on state

