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1. The need for modelling
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Financial impact of lifestyle

Financial impact of mortality rating factors

Factor Step change Reserve Change

Base case - 13.39 -
Gender Female-male 12.14 -9.3%

Lifestyle Top-bottom 10.94 -9.9%
Duration Short-long 9.88 -9.7%

Pension size Large-small 9.36 -5.2%
Region South-North 8.90 -4.9%

Overall - - -33.6%

Source: Richards and Jones (2004), page 39.
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Survival models

xi xi ++ ti

di == 0

X

X
xi xi ++ ti

di == 1

Time observed, ti, is shown in grey, while deaths are marked ×.
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Survival models
• Time observed, ti, is waiting time (a.k.a. central exposed-to-risk)
• di is the event indicator
• ti and di not independent, so considered as a pair {ti, di}
• Not all lives are dead, so survival times are right-censored
• Lives enter at age xi > 0, so data is left-truncated
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2. Data preparation
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Four stages of data preparation

1. Extraction
2. Validation
3. Deduplication
4. Profiling
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Data preparation: extraction

• Prefer data direct from payment system, not valuation extracts
• Dates, not ages
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Data preparation: validation

• Validity, e.g. M or F for gender, not X or blank
• Consistency, e.g. commencement date after date of birth
• Sense, e.g. number of people born on 01/01/1901
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Data preparation: deduplication

• Payment systems policy- or benefit-orientated
• Multiple records per person common
• Multiple records often correlated with wealth
• Must deduplicate to ensure independence assumption valid
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Data preparation: deduplication

• How to recognize duplicates?
• System client ID typically unreliable
• NI number often not available (or unreliable)
• Create deduplication key from basic data
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Data preparation: deduplication

• Date of birth
• Gender
• Surname
• Forename (first initial only)
• Postcode
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Examples of matching forename fields

Surname Forename(s) Comment

Richards Stephen First initial only used.
Richards Stephen J First initial only used.
Richards Steven First initial only used.
Richards S First initial used.
Richards Mr S Title skipped, first initial used.
Richards Rev Stephen J Title skipped, first initial only used.
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Matching surnames using double metaphone

Record Surname Initial Comment

1 Richie G
2 Ritchie G Match on surname in record 1.
3 Mohammed A
4 Muhammed A Match on surname in record 3.
5 Mohammad A Match on surname in record 3.
6 Mahamad A Match on surname in record 3.
7 Muammad A Match on surname in record 3.
8 Desantis J
9 D’Santis J Match on surname in record 8.

10 DE-SANTIS J Match on surname in record 8.

Source: Own examples using algorithm described in Philips (1990).
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Data preparation: profiling
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3. Geodemographic models
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Retirement life expectancy by socio-economic group
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Why fund size is no longer reliable

• Stakeholder fund of £8,583
• Poor? Higher-mortality group?
• But AVC fund elsewhere of £42,808. . .

• . . .giving total fund of £51,391. . .

• . . .so not poor and likely light mortality!
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3. Geodemographic models

• Use address or postcode to derive geodemographic profile
• Need full, two-part postcode in U.K.
• Options: Mosaic, FSS (both from Experian) or Acorn (from CACI)
• Examples:

EH4 2AB → Mosaic Type 02 (“Cultural Leadership”)
EH4 2AB → Acorn Type 13 (“Prosperous Professionals”)
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Final checks on data: Cramer’s V

Gender Region code Size Status Type

Birth year 21.6 3.1 11.4 54.4 4.0
Gender 4.8 16.1 12.4 5.6

Region code 5.9 6.4 20.6
Size 17.4 9.7

Status 10.4

Source: Own calculations of Cramer’s V statistic for life-office pensioner data set, all ages. “Type”is
the Experian Postcode Mosaic type code. “Status”is a boolean flag for whether death has occured
(1) or not (0).
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4. Selecting a model

Slide 21 www.richardsconsulting.co.uk



Crude force of mortality
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Source: Observed force of mortality (•) together with P-spline regression results in blue. Only the
mortality between ages 60 and 100 shows regular behaviour suitable for a mortality law. Longevitas
Ltd calculations using mortality experience of a portfolio of life-office pensioners.
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Some mortality laws

Gompertz (1825) µx = eα+βx

Makeham (1859) µx = eε + eα+βx

Perks (1932) µx =
eα+βx

1 + eα+βx

Beard (1959) µx =
eα+βx

1 + eα+ρ+βx

Makeham-Perks (1932) µx =
eε + eα+βx

1 + eα+βx

Makeham-Beard (1932) µx =
eε + eα+βx

1 + eα+ρ+βx
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Model structure

αi = abaseline +
m∑

j=1

zijaj

βi = bbaseline +
m∑

j=1

zijbj

m components (factors) to the overall risk
aj is a parameter for main effect of risk j

bj is a parameter for the interaction of risk j with age
zij takes the value 1 when life i has risk factor j and the value 0 otherwise
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Example model structure
Model with risk factors for both gender and smoker status:

αi = abaseline + zi,maleamale + zi,smokerasmoker

βi = bbaseline + zi,malebmale + zi,smokerbsmoker
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Choosing between models
Minimise Akaike’s Information Criterion (Akaike, 1987):

AIC = −2` + 2n

where n is the number of parameters used in fitting the model and `
is the log-likelhood function evaluated at the joint maximum-likelihood
estimate.
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Simplifying complex factors

• Mosaic Type has 61 levels
• Acorn Type has 57 levels
→ neither convenient nor parsimonious!
• Consider various assignments to (say) three broad groups
• Use AIC to choose optimal assignment
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Frailty models

• Gompertz model is µx = eα+βx

• Re-write as µx = zeβx, where z = eα

• If z has gamma distribution, then population law is:

µx =
eα+βx

1 + eα+ρ+βx

even when each individual i follows µx = eαi+βx.
• Horiuchi and Coale (1990)
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Model with age only

Age

AIC relative
Mortality law AIC to Gompertz Parameters

Gompertz 386742 0 2
Makeham 386744 2 3
Perks 386618 -124 2
Beard 386560 -182 3
Makeham-Perks 386620 -122 3
Makeham-Beard 386559 -183 4

Source: Own calculations using mortality experience of life-office pensioners aged between 60 and
95 between 2000-2006.
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Model with age and gender

Age*Gender

AIC relative
Mortality law AIC to Gompertz Parameters

Gompertz 384824 0 4
Makeham 384826 2 5
Perks 384765 -59 4
Beard 384761 -63 5
Makeham-Perks 384762 -62 5
Makeham-Beard 384728 -96 6

Source: Own calculations using mortality experience of life-office pensioners aged between 60 and
95 between 2000-2006.

Slide 30 www.richardsconsulting.co.uk



Model with age, gender and pension size-band

Age*(Gender+SizeBand)

AIC relative
Mortality law AIC to Gompertz Parameters

Gompertz 383562 0 8
Makeham 383564 2 9
Perks 383515 -47 8
Beard 383513 -49 9
Makeham-Perks 383510 -52 9
Makeham-Beard 383486 -76 10

Source: Own calculations using mortality experience of life-office pensioners aged between 60 and
95 between 2000-2006.

Slide 31 www.richardsconsulting.co.uk



Model with age, gender and lifestyle

Age*(Gender+Lifestyle)

AIC relative
Mortality law AIC to Gompertz Parameters

Gompertz 383537 0 8
Makeham 383539 2 9
Perks 383518 -19 8
Beard 383520 -17 9
Makeham-Perks 383513 -24 9
Makeham-Beard 383509 -28 10

Source: Own calculations using mortality experience of life-office pensioners aged between 60 and
95 between 2000-2006.
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Model with age, gender, lifestyle and pension size

Age*(Gender+Lifestyle+SizeBand)

AIC relative
Mortality law AIC to Gompertz Parameters

Gompertz 382597 0 12
Makeham 382599 2 13
Perks 382583 -14 12
Beard 382583 -14 13
Makeham-Perks 382575 -22 13
Makeham-Beard 382576 -21 14

Source: Own calculations using mortality experience of life-office pensioners aged between 60 and
95 between 2000-2006.
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5. Checking financial applicability

• Statistical models are lives-based. . .

• . . .whereas financial liabilities are not
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Membership Percentage of portfolio pension:
decile (i) Life office (ii) Pension schemes

1 54.3% 46.3%
2 15.2% 17.8%
3 9.4% 11.4%
4 6.6% 8.0%
5 4.9% 5.8%
6 3.6% 4.1%
7 2.7% 2.9%
8 1.8% 2.0%
9 1.1% 1.2%

10 0.4% 0.5%
Total 100.0% 100.0%
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5. Checking financial applicability

• Can use bootstrapping to check model
• Sample randomly from portfolio
• Use model to predict mortality
• Compare with what actually happened
• Repeat sampling 10,000 times (say)
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Bootstrapping a term assurance model

Ratio of actual v. expected mortality

0.5 1.0 1.5 2.0 2.5 3.0

Mortality weighted by lives
Mortality weighted by sum assured

Source: Bootstrapped experience for portfolio of 50,000 term assurances, repeated 10,000 times.
Longevitas Ltd calculations using model for mortality experience of a portfolio of nearly 1 million
term-assurance policies between 2002 and end-2006. Model is Age + Gender + SelectPeriod +
Smoker + JointLife + Product + Size.
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6. Conclusions and questions

• Insured data is a natural fit for survival models
• Careful data preparation is critical
• Geodemographic models substantially enhance fit
• Models combining postcode and pension size usually better than either
one alone
• Beard parameter, ρ, signals further variation to be explained
• Bootstrapping checks financial applicability of statistical models
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