KTH, Stockholm

Portfolio-specific mortality models

Stephen Richards 11th May 2015

Copyright © Longevitas Ltd. All rights reserved. This presentation may be freely distributed, provided it is unaltered and has this copyright notice intact.

www.longevitas.co.uk

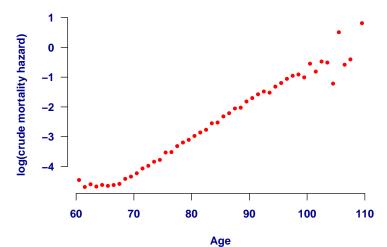
- 1. About the speaker
- 2. Risk factors
- 3. Fitting multi-factor models
- 4. Communication
- 5. Measuring uncertainty
- 6. Conclusions

1 About the speaker

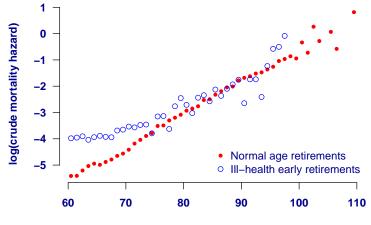
1 About the speaker

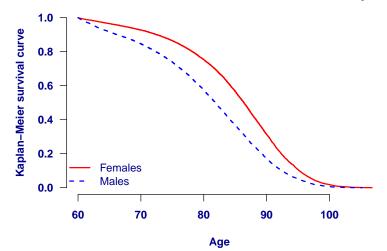
- Independent consultant on longevity risk since 2005.
- Founded longevity-related software businesses in 2006:

• Joint development with Heriot-Watt University in 2009:

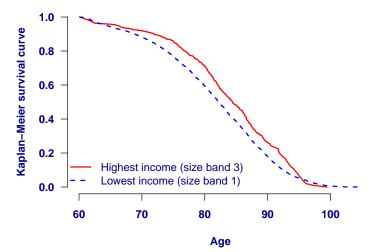


2 Risk factors





Mortality by health at retirement. Richards et al. [2013].



Survival curves for males and females. Richards et al. [2013].

Survival curves by pension size (males only). Richards et al. [2013].

UK annuitants from Richards and Jones [2004]:

Risk factor	Change	Annuity factor	Relative change
Base case	-	13.39	
Gender	$Female \rightarrow male$	12.14	-9.3%
Lifestyle	$Top \rightarrow bottom$	10.94	-9.9%
Duration	Short→long	9.88	-9.7%
Pension size	$Largest \rightarrow smallest$	9.36	-5.2%
Region	$\mathrm{South}{\rightarrow}\mathrm{North}$	8.90	-4.9%
Overall			-33.6%

German pensioners from Richards et al. [2013]:

Risk factor	Change	Annuity factor	Relative change
Base case	-	16.11	
Gender	$Female \rightarrow male$	14.53	-9.8%
Retirement health	Normal \rightarrow ill-health	12.97	-10.7%
Pension size	$Largest \rightarrow smallest$	11.72	-9.7%
Region	$B \rightarrow P$	11.02	-5.9%
Employer type	$Private \rightarrow public$	10.60	-3.9%
Overall			-34.2%

- Different portfolios have different risk factors available.
- Important to use risk factors relevant to *your* business processes.

Q. What was "Lifestyle" for the UK annuitants?

A. Profile based on the annuitant's address or postcode...

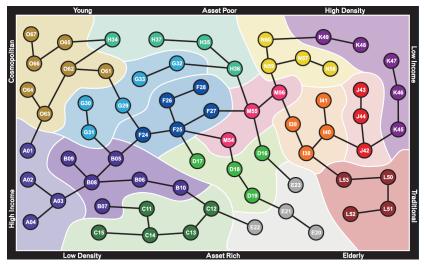
- UK has a hierarchical postcode structure.
- Each piece of postcode narrows in on a geographical area.
- Hierarchical postcodes in UK, USA, Canada and the Netherlands.

- Compare the postcodes EH4 4SP and EH3 6BX.
- Both in Edinburgh.
- \bullet Life expectancy "1.1 years less than the UK average" 1

¹Punter Southall, Postcode Life Expectancy Tool, accessed on 5th May 2015. www.longevitas.co.uk

EH4 4SP. Source: Google Maps, accessed 5th May 2015.

EH3 6BX. Source: Google Maps, accessed 5th May 2015.



- There are around 1.7 million residential postcodes.
- We can't use Google Maps every time $\textcircled{\odot}$
- Solution is to map each postcode to a *geodemographic type code*...

Mosaic family tree

- EH4 4SP \rightarrow K46 Municipal Challenge, High-Rise Residents.
- EH3 6BX \rightarrow A01 City Prosperity, World-Class Wealth.
- 1.7 million residential postcodes become 67 lifestyle codes.

Works in:

- UK.
- USA.
- Canada.
- The Netherlands.

Does not appear to work in France.

Would it work in Sweden?

3 Fitting multi-factor models

- Q. Why not partition the data set and model deaths as Poisson counts?
- A. Low cell counts limit the number of risk factors we can use...

Deaths per risk-factor combination (Richards et al. [2013]).

Member of largest scheme	Region	Scheme type	Pension size-band	Normal 1	etirees:	Ill-health	retirees:	Widow	(er)s:
				Females	Males	Females	Males		Males
No	в	1	1	5,142	5,313	525	738	4,434	618
			2	824	725	39	98	36	0
			3	282	413	14	33	24	1
		2	1	2,200	1,323	308	183	628	222
			2	305	275	20	39	18	0
			3	140	206	15	18	15	1
	Р	1	1	695	811	51	99	798	89
			2	138	122	7	22	9	0
			3	59	72	1	5	3	1
		2	1	174	274	26	33	166	23
			2	26	56	3	4	4	0
			3	8	41	5	2	5	0
Yes	В	1	1	480	338	41	45	224	47
			2	108	65	12	3	4	0
			3	60	45	1	3	4	0
Total	s			10,641	10,079	1,068	1,325	6,372	1,002

- Previous slide has over 30,000 deaths.
- However, 21 cells have fewer than five deaths...
- ...and we still haven't partitioned by age.

- This approach is called *stratification*.
- It severely limits the number of risk factors we can use.

- It is better to model mortality at the level of the individual.
- Individual-level models have no limits on the number of risk factors.
- Models for the force of mortality, μ_x , offer the greatest flexibility.

3 Fitting multi-factor models

Gompertz [1825] model:

$$\mu_x = e^{\alpha + \beta x}$$

www.longevitas.co.uk

(1)

Gompertz [1825] model for each individual:

$$\mu_{x_i} = e^{\alpha_i + \beta_i x_i} \tag{2}$$

CONGEVITAS

3 Fitting multi-factor models

$$\alpha_i = \alpha_0 + \sum_j \alpha_j z_{i,j}$$
$$\beta_i = \beta_0 + \sum_j \beta_j z_{i,j}$$

where

$z_{i,j} = \begin{cases} 1 & \text{if life } i \text{ has risk factor } j, \\ 0 & \text{otherwise.} \end{cases}$

(5)

(3)

(4)

CONGEVITAS

Wide choice of mortality laws:

Makeham [1859]:
$$\mu_x = e^{\epsilon} + e^{\alpha + \beta x}$$
 (6)
Perks [1932]: $\mu_x = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$ (7)
Beard [1959]: $\mu_x = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \rho + \beta x}}$ (8)

More choices in Richards [2008] and Richards [2012].

TONGEVITAS

3 Fitting multi-factor models **Congevitas**

Find parameter estimates by maximising log-likelihood:

$$\ell = \sum_{i} H_{x_i}(t_i) + \sum_{i} d_i \log \mu_{x_i} \tag{9}$$

where

$$H_{x_i}(t_i) = \int_0^{t_i} \mu_{x_i+s} ds$$
 (10)

and

 $d_i = \begin{cases} 1 & \text{if life dead at age } x_i + t_i, \\ 0 & \text{otherwise.} \end{cases}$ (11)

4 Communication

- Communicating a multi-factor model is tricky.
- Model might be too commercially valuable to disclose in detail.
- Conversion to a reference table solves both issues...

- Equate reserves under private bespoke basis (B) and public reference basis (T).
- For pensions or annuities this means solving:

$$\sum_{i} w_i \bar{a}_{x_i}^T = \sum_{i} w_i \bar{a}_{x_i}^B \tag{12}$$

• Usually solve separately for males and females.

Model in Richards et al. [2013] has seven risk factors besides age and time:

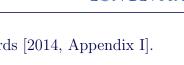
- Gender.
- Normal v. ill-health retirement.
- Pension size.
- Region.
- Scheme/employer type.
- First life v. surviving spouse.
- Membership of largest city scheme.

Equivalent percentages of Sterbetafel Deutschland 2009–2011.

Member of largest schem	${f Region}$	Scheme type	Pension size-band	Normal retirees: Females Males		Ill-health retirees: Females Males		Widow(er)s: Females Males	
				remates	Wates	remates	wrates	remates	wrates
No	В	1	1	90.9	95.7	129.0	148.9	105.2	114.9
			2	86.6	84.5	120.1	123.2	98.7	98.5
			3	77.9	75.8	107.4	109.2	88.4	87.9
		2	1	84.4	88.3	118.5	135.5	97.2	105.4
			2	81.5	79.2	112.1	114.3	92.5	91.9
			3	73.4	71.1	100.4	101.5	83.0	82.1
	Ρ	1	1	99.5	108.6	145.4	175.6	116.6	132.3
			2	93.6	93.6	132.3	140.0	107.5	110.2
			3	83.8	83.5	117.6	123.4	95.9	97.8
		2	1	92.0	99.7	132.8	159.0	107.3	120.9
			2	87.7	87.3	123.0	129.4	100.4	102.5
			3	78.6	78.0	109.5	114.2	89.7	91.1
Yes	В	1	1	82.6	86.2	115.5	131.7	95.0	102.8
			2	80.0	77.6	109.8	111.8	90.8	90.0
			3	72.1	69.7	98.4	99.3	81.5	80.4

Je

5 Measuring uncertainty



- Consider UK pension scheme in Richards [2014].
- 17,067 benefit records, of which 2,265 were deaths.
- A model for age, gender, pension size and time trend is fitted.
- Equivalent-reserve calculation equates to 88.5%/87.2% of S2PA mortality table.
- What uncertainty surrounds these numbers?
- What is a 1:200 stress for mis-estimation risk?

Pension scheme data from Richards [2014, Appendix I].

Lives Pensions

Top tenth of pensioner population receives 39.8% of all pensions.
Next two tenths of pensioner population receive further 31.4%.

Parameter estimates for model with age, gender, pension size and time. From Richards [2014, Table 6].

		Standard	Contributing
Parameter	Estimate	error	lives
Age	0.148	0.005	15,698
Gender.M	0.479	0.060	$5,\!956$
Intercept	-14.731	0.491	$15,\!698$
Makeham	-5.420	0.154	$15,\!698$
Pension size — medium	-0.180	0.078	$3,\!140$
Pension size — largest	-0.313	0.108	$1,\!567$
Time	-0.046	0.016	$15,\!698$

Lives with largest pensions have lowest mortality, but estimate also has greater uncertainty.

Q. How do we measure the financial impact of this uncertainty?

A. Use the covariance matrix for the parameter estimates...

Basic procedure:

- Fit a parametric statistical model to portfolio's experience data.
- Use the covariance matrix to generate alternative parameter sets.
- Value in-force liabilities using the alternative parameter sets.
- Collect liability valuations into set, S.

- S is a sample of the distribution of financial impact of mis-estimation.
- S can then be analysed to understand mis-estimation risk...

Let S_p be the p^{th} quantile of S. Then:

- $S_{0.5}$ is the median or central liability.
- $S_{0.025}$ and $S_{0.975}$ give a 95% confidence interval for the liability.
- $S_{0.995}$ is the 99.5% Solvency II stressed liability.

5 Quantifying mis-estimation riskongevitas

In practice we quote the mis-estimation capital as:

$$\left(\frac{S_{0.995}}{S_{0.5}} - 1\right) \times 100\% \tag{13}$$

Can use mean of S in place of $S_{0.5}$ (difference is usually negligible).

99.5% mis-estimation capital as percentage of best-estimate reserve:

		Number	Mis-estimation
Data set	Date range	of lives	$\operatorname{capital}$
UK pensioners	2007 - 2012	$15,\!698$	4.4 - 4.7%
German pensioners	2007 - 2011	244,908	$1.1 ext{}1.2\%$

 \rightarrow Larger portfolios with more data need less mis-estimation capital.

6 Conclusions

- Use risk factors relevant to your business.
- Use survival models to create portfolio-specific tables...
- ... and for measuring mis-estimation risk.
- Equate results to reference table for communication.

- R. E. Beard. Note on some mathematical mortality models. In G. E. W. Wolstenholme and M. O'Connor, editors, *The Lifespan of Animals*, pages 302–311. Little, Brown, Boston, 1959.
- B. Gompertz. The nature of the function expressive of the law of human mortality. *Philosophical Transactions of the Royal Society*, 115:513–585, 1825.

W. M. Makeham. On the law of mortality and the construction of annuity tables. Journal of the Institute of Actuaries, 8:301–310, 1859.

- W. Perks. On some experiments in the graduation of mortality statistics. Journal of the Institute of Actuaries, 63:12–40, 1932.
- S. J. Richards. Applying survival models to pensioner mortality data. *British Actuarial Journal*, 14(II): 257–326 (with discussion), 2008.
- S. J. Richards. A handbook of parametric survival models for actuarial use. *Scandinavian Actuarial Journal*, 2012 (4):233–257, 2012.
- S. J. Richards. Mis-estimation risk: measurement and impact. *Longevitas Ltd*, 2014.

References III

- S. J. Richards and G. L. Jones. *Financial aspects of longevity risk*. Staple Inn Actuarial Society (SIAS), London, 2004.
- S. J. Richards, K. Kaufhold, and S. Rosenbusch. Creating portfolio-specific mortality tables: a case study. *European Actuarial Journal*, 3 (2):295–319, 2013.