European Actuarial Academy, Hotel Modul, Vienna

Pensioner mortality differentials: a case study

Stephen J. Richards, BSc, FFA, PhD 20th June 2013

Copyright (c) Longevitas Ltd. All rights reserved. Electronic versions of related papers and presentations can be found at www.longevitas.co.uk

Contents

- 1. About the speaker
- 2. Data description
- 3. Exploratory data analysis
- 4. Model structure and fitting
- 5. Results
- 6. Conclusions

1. About the speaker

1. About the speaker

- Consultant on longevity risk since 2005
- Founded longevity-related software businesses in 2006:

• Joint venture with Heriot-Watt in 2009:

2. Data description

2. Data description

Multi-employer pension arrangement in Germany:

- 253,444 pension records.
- -31,842 deaths in 2007–2011.
- 1.03 million life-years lived in 2007–2011.

Source: Richards, Kaufhold and Rosenbusch (2013).

2. Data description

Unequal distribution of liabilities:

- 50% of all pensions are received by just 23.5% of lives.
- males are 34.5% of lives, but 59.7% of large-pension cases.

Source: Richards, Kaufhold and Rosenbusch (2013).

 $\log_e(\text{crude mortality hazard})$ from age 60, males and females combined:

Source: Richards, Kaufhold and Rosenbusch (2013), Figure 1.

- Mortality increases with age.
- Smoothing is needed to iron out random variation.
- Extrapolation is needed for highest ages.

 $\log_e(\text{crude mortality hazard})$ from age 60 by retirement type:

Source: Richards, Kaufhold and Rosenbusch (2013), Figure 4.

- Strong excess mortality for ill-health retirals, but
- Excess ill-health mortality reduces with increasing age.
- This phenomenon is known as mortality convergence.

Kaplan-Meier product-limit estimator by gender from age 60:

Source: Richards, Kaufhold and Rosenbusch (2013), Figure 2.

Kaplan-Meier product-limit estimator by income from age 60:

Source: Richards, Kaufhold and Rosenbusch (2013), Figure 3.

The data tell us what the requirements of the model are:

- smooth out random variation,
- extrapolate to higher ages,
- allow for multiple risk factors simultaneously, and
- allow risk factors to vary their impact by age.

4. Model structure and fitting

4. Model structure

- All requirements are fulfilled by a parametric survival model.
- Here we will use the Makeham-Perks law:

$$\mu_x = \frac{e^{\epsilon} + e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$$

with real-valued age x and real-valued parameters ϵ , α and β .

Source: Richards (2008, 2012).

4. Model features

Automatic smoothing of random variation:

4. Model features

Sensible extrapolation to higher ages:

4. Model fitting: method of maximum likelihood

Likelihood function:

$$L = \prod_{i=1}^{n} {}_{t_i} p_{x_i} \mu_{x_i+t_i}^{d_i}$$

where:

- x_i is the entry age for life i of n lives,
- t_i is the time observed, and
- $d_i = 1$ if life i is dead, otherwise $d_i = 0$.

4. Model structure

Simple relationship between μ_x and survival probability $_tp_x$:

$$tp_x = \exp\left(-\int_0^t \mu_{x+s} ds\right)$$
$$= \exp\left(-H_x(t)\right)$$

 $H_x(t)$ is the integrated hazard function.

4. Model fitting: method of maximum likelihood

Optimisation is often easier with the log-likelihood function:

$$\ell = \log L$$

$$= \sum_{i=1}^{n} -H_{x_i}(t_i) + \sum_{i=1}^{n} d_i \log \mu_{x_i+t_i}$$

where
$$H_x(t) = \int_0^t \mu_{x+s} ds$$
.

Richards (2012) tabulates μ_x and $H_x(t)$ for sixteen models.

4. Model structure

• Assume α should vary by gender:

$$\alpha_i = \alpha_0 + \alpha_M z_i$$

where:

- α_0 is the so-called baseline,
- α_M is the effect of being male, and
- $z_i = 1$ if life i is male, otherwise $z_i = 0$ if life i is female.
- α_M measures the mortality difference for being male.
- Alternatively, we could set males as the baseline and estimate α_F .

4. Model structure

• Simple extension to j risk factors:

$$\alpha_i = \alpha_0 + \sum_{j=1}^m \alpha_j z_{j,i}$$

where:

- α_i is the effect of risk factor j, and
- $-z_{j,i}=1$ if life i has risk factor j, otherwise $z_{j,i}=0$.
- $\alpha_j < 0$ when mortality is reduced, $\alpha_j > 0$ when mortality is raised.
- No minimum number of lives for estimating α_j .

5. Results

5. Results for German pensioners

Seven statistically significant risk factors for longevity:

- age,
- gender,
- pension size,
- retirement status: normal, ill-health or widow(er),
- employer type,
- region, and
- time

Source: Richards, Kaufhold and Rosenbusch (2013).

5. Results for German pensioners

Financial impact on annuity factors at age 65:

Risk factor	Change	Annuity factor	Relative change
Base case	_	16.114	
Gender	$Female \rightarrow male$	14.529	-9.8%
Retirement health status	$Normal \rightarrow ill-health$	12.974	-10.7%
Pension size	$Largest \rightarrow smallest$	11.717	-9.7%
Region	$B\rightarrow P$	11.025	-5.9%
Employer type	$\mathbf{Private} {\rightarrow} \mathbf{public}$	10.599	-3.9%
Overall			-34.2%

Source: Richards, Kaufhold and Rosenbusch (2013), Appendix 1.

5. Results — international comparison

- How do these results compare with other data sets?
- Consider annuities with a UK insurer...

5. Results for UK annuitants

UK insurer with six available risk factors:

- age,
- gender,
- lifestyle (via postcode),
- duration (time since annuity purchase),
- pension size, and
- region.

Source: Richards and Jones (2004).

5. Results for UK annuitants

Financial impact of mortality rating factors:

Factor	Step change	Reserve	Change
Base case	-	13.39	
Gender	$Female \rightarrow male$	12.14	-9.3%
Lifestyle	$Top \rightarrow bottom$	10.94	-9.9%
Duration	$Short \rightarrow long$	9.88	-9.7%
Pension size	$Largest \rightarrow smallest$	9.36	-5.2%
Region	$South \rightarrow North$	8.90	-4.9%
Overall			-33.6%

Source: Richards and Jones (2004), page 39.

5. What risk factors should you use?

- Each portfolio is unique.
- Business practice determines available information.
- Fit models to your data using business-relevant risk factors.
- Even small portfolios can have significant characteristics of their own...

5. Impact of scheme-specific mortality

- Return to German pensioner data.
- The largest scheme has approximately 12,000 members.
- Do the seven risk factors explain the mortality variation in this scheme?

5. Impact of scheme-specific mortality

- Mortality around 10% lower for largest scheme.
- Effect exists even after allowing for all seven other risk factors.
- Result was highly statistically significant (p-value 0.0001).
- Impact was an extra $2-2\frac{1}{2}\%$ on reserves.

6. Conclusions

6. Conclusions

- A parametric survival model simultaneously:
 - identifies the main risk factors,
 - identifies any interactions with age,
 - smoothes (graduates) the rates, and
 - extrapolates to higher ages.
- Even small portfolios can have significant characteristics of their own.

References

Kaplan, E. L. and Meier, P. **1958** Nonparametric estimation from incomplete observations, Journal of the American Statistical Association **53**, 457–481.

RICHARDS, S. J. AND JONES, G. L. **2004** Financial aspects of longevity risk, Staple Inn Actuarial Society, London

RICHARDS, S. J. **2012** A handbook of parametric survival models for actuarial use, Scandinavian Actuarial Journal, 2012 (4), pages 233–257.

RICHARDS, S. J., KAUFHOLD, K. AND ROSENBUSCH, S. **2013** Creating portfolio-specific mortality tables: a case study, Longevitas working paper

