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1. About the speaker
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1. About the speaker

• Consultant on longevity risk since 2005

• Founded longevity-related software businesses in 2006:

• Joint venture with Heriot-Watt in 2009:
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2. Why model longevity risk?
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2. Why model longevity risk?

We want to build a model for longevity risk so we can:

— understand the risk in a portfolio,

— know all the financially significant risk factors,

— manage existing risks, and

— correctly price new risks (underwriting).
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2. What does a good model look like?

A good model will:

— closely match reality,

— make full use of all available data, but

— summarise the important features about the risk.
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3. Data
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3. Data
Typically actuaries are faced with portfolios with:

— separate policies with individual lives at risk,

— policies which start on different dates at different ages, and

— policyholders with different combinations of risk factors.
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4. Model requirements and challenges
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4. Requirements and challenges

Some of the things we want from a model include:

— getting the shape of the risk correct by age,

— identifying the main risk factors, and

— extrapolating to higher ages.

We also want a model to use all available data efficiently.
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4. Getting the shape of the risk correct by age
We need a model which follows the shape and pattern of our portfolio:
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Source: Longevitas Ltd, using data from Richards, Kaufhold and Rosenbusch (2013). Ratio of
observed deaths to the expected deaths according to German population mortality tables for 2009–
2011 (males only).
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4. Getting the shape of the risk correct by age

We need a model which follows the shape and pattern of our portfolio:
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4. Identifying the effect of risk factors

In the data set in Richards, Kaufhold and Rosenbusch (2013):

— 34.5% of lives are male, but

— 59.7% of lives with largest pensions are male.

• How do you separate the effects of gender and pension size?

• We need models which can do this without double counting.
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4. Extrapolating to higher ages

We need mortality rates at ages where data are sparse or non-existent:
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Source: Longevitas Ltd, using data from Richards, Kaufhold and Rosenbusch (2013). See also
http://www.longevitas.co.uk/site/informationmatrix/graduation.html.

Slide 14 www.longevitas.co.uk

http://www.longevitas.co.uk/site/informationmatrix/graduation.html
www.longevitas.co.uk


4. Inefficient uses of your data

• Splitting a data set (stratification) weakens a data set.

• Grouping individuals loses information on which lives actually died.

• Models for qx:

(i) lose information on when someone died during the year,

(ii) lose partial years of exposure, and

(iii) cannot easily handle competing risks.
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5. Model types available
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5. Model types available

We will consider five types of model:

— A/E comparisons,

— Whittaker-style graduation,

— Kaplan-Meier analysis,

— Generalized Linear Models (GLMs), and

— survival models.
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5. A/E comparisons

Ratio of deaths to the number expected according to a table:

Actual number of deaths
n∑
i=1

∫ ti

0

µxi+sds

where:

— there are n lives,

— each life i is observed from age xi to age xi + ti,

— µx is the mortality hazard at age x, and

— µx is approximated from a table with µx+ 1
2
≈ − log(1− qx)
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5. A/E comparisons

+ Simple — can be done in a spreadsheet

+ Robust when people have multiple policies

+ Provides extrapolated rates via existing table structure

But:

– Cannot handle multiple risk factors without stratification

– Assumes the risk is a constant proportion of the table. . .
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5. A/E comparisons
Risk is not a constant proportion of this table:
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observed deaths to the expected deaths according to German population mortality tables for 2009–
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5. A/E comparisons
Restricting the age range does not help much:
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5. Whittaker-style graduation

Find a set of rates msmooth
x which minimizes:

∑
(∆3msmooth

x )2 + h
∑(

dx
Ecc
−msmooth

x

)2

where:

— dx is the number of deaths observed at age x,

— Ecx is the corresponding central exposed to risk (time lived), and

— h is set arbitrarily to balance the smoothness of the msmooth
x rates

against the closeness of fit to the observed deaths.

Source: Whittaker (1919).
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5. Whittaker-style graduation

+ Relatively simple — can be done in R

+ Better fit to shape of your risk than A/E comparison

But:

– Cannot handle multiple risk factors without stratification,

– Vulnerable to sparse data, and

– Poor at extrapolation. . .
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5. Whittaker-style graduation

Whittaker graduation works well in the region of the data only:
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Source: Longevitas Ltd, using data for males from Richards, Kaufhold and Rosenbusch (2013) and
h=0.01.
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5. Kaplan-Meier

Calculate the empirical survival curve as follows:

tjpx =

j≤n∏
i=1

(
1− dx+ti

lx+t−
i

)

where:

— x is the outset age for the survival curve,

— {x+ ti} is the set of n distinct ages at death,

— lx+t−
i

is the number of lives alive immediately before age x+ ti,

— dx+ti is the number of deaths dying at age x+ ti.

Source: Richards (2012), an adaptation from the concept from Kaplan und Maier (1958).
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5. Kaplan-Meier curve

Actually a step function, but it looks smooth for large numbers of deaths:
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5. Kaplan-Meier

A very useful tool for exploratory data analysis:
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See also http://www.longevitas.co.uk/site/informationmatrix/doyouhatestatisticalmodels.html
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5. Kaplan-Meier

+ Simple concept, supported in most statistical packages including R

+ Fits the data well

But:

– Cannot handle multiple risk factors without stratification, and

– Not a summary of the data, just a restatement of it.
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5. GLMs for grouped counts

We assume a statistical model as follows:

Dx ∼ Binomial(nx, qx)

or else:

Dx ∼ Poisson(Ecxµx)

where:

— Dx is the number of observed deaths,

— nx is the number of lives aged x,

— qx is the mortality rate for age x,

— µx is the mortality hazard for age x, and

— Ecx is the time lived exposed to risk of death at age x.
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5. GLMs for grouped counts

+ Available in standard statistical software, such as R

+ Good at extrapolation

+ Can handle multiple risk factors

But:

– Loses information through grouping

– Binomial model loses further information through modelling qx

– Poisson model requires minimum expected number of deaths per cell,
which limits number of risk factors
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5. GLMs for individual lives
We build a model for the individual probability of death, qxi , as follows:

log

(
qxi

1− qxi

)
=
∑
j

αjzi,j + xi
∑
j

βjzi,j

where:

— each life i starts the year of observation ages xi,

— there are j risk factors with main effects αj ,

— the main effects interact with age with βj , and

— the indicator variable zi,j takes the value 1 when life i has risk
factor j, and zero otherwise.
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5. GLMs for individual lives
+ Available in standard statistical software, such as R

+ Good at extrapolation

+ Can handle unlimited number of risk factors

+ No stratification

But:

– Cannot easily handle competing risks

– Failure of independence assumption across multiple years. . .
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5. Common mistakes with GLMs for individuals

• Having each individual appear several times[1]

• Incorrectly allowing for partial years of exposure[2]

• Modelling tqx — not linear when t > 1

[1] See http://www.longevitas.co.uk/site/informationmatrix/logisticalnightmares.html

[2] See http://www.longevitas.co.uk/site/informationmatrix/partofthestory.html
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5. Survival models
Simple observational structure as longitudinal study:

xi xi ++ ti

di == 0

X

X
xi xi ++ ti

di == 1

Time observed, ti, is shown in grey, while deaths are marked ×.
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5. Survival models
• Time observed, ti, is waiting time (central exposed-to-risk to actuaries).

• di is the event indicator: 1 for dead, 0 for alive.

• ti and di not independent, so considered as a pair {ti, di}.
• Not all lives are dead, so survival times are right-censored.

• Lives enter at age xi > 0, so data is also left-truncated.
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5. Survival models
• Survival models are ideal for actuarial work — Richards (2008, 2012).

• A portfolio of risks is like a medical study with continuous recruitment.

• The future lifetime of an individual aged x is a random variable, Tx.

• Tx has a probability density function tpxµx+t for t > 0.
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3. Overview of some common models

Gompertz µx = eα+βx

Makeham µx = eε + eα+βx

Perks µx =
eα+βx

1 + eα+βx

Beard µx =
eα+βx

1 + eα+ρ+βx

Makeham− Perks µx =
eε + eα+βx

1 + eα+βx

Makeham− Beard µx =
eε + eα+βx

1 + eα+ρ+βx

Source: Richards (2008, 2012).
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5. Survival models
+ Good at extrapolation

+ Can handle unlimited risk factors

+ No stratification

+ Independence assumption respected

+ Can handle competing risks
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6. Conclusions
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6. Conclusions
• Kaplan-Meier curves useful for exploratory data analysis.

• Statistical models are best for:

— summarizing main risk features,

— separating the effect of risk factors, and

— extrapolating to ages with sparse data.

• Statistical models for individuals avoid stratification.

• Survival models most closely match the reality of individual risk.

• Example application to follow in second presentation. . .
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