Pensions Convention, St Andrews

Longevity — the hidden risk

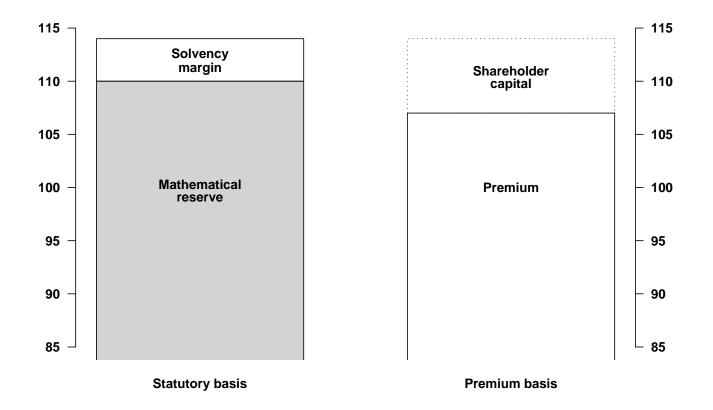
Stephen Richards 6^{th} June 2006

Copyright (c) Stephen Richards. All rights reserved. Electronic versions of this and other freely available papers and presentations can be found at www.richardsconsulting.co.uk

About the author

- \bullet 1990 graduated Heriot-Watt
- 1994 qualified F.F.A.
- 1995 consulting in Germany
- 1997 joined Standard Life
- 2003 Head of Mortality Risk at Prudential
- \bullet 2005 independent consultant on longevity risk

New capacity in bulks market


- Established insurers entering bulks market (NU, AIG)
- Start-ups entering bulks market (Paternoster, Synesis)

Longevity risk — plan of talk

- How investors (should) view longevity risk
- How life offices approach longevity risk
- New developments and techniques
- Summary and questions

How investors (should) view longevity risk

Annuity business is highly leveraged

Source: Richards Consulting report on Pricing and Capital Management for Annuity Portfolios. Slide 5 www.richardsconsulting.co.uk

What investors want to know

- How much capital do you need?
- When will I get it back?
- What return on my capital will I get?
- What volatility does this return have?
- Traditional actuarial calculations don't answer these questions.

Pricing and return on capital (IRR)

Age at	IRR		
outset (years)	× –	annum) Females	
55	27	32	
60	22	25	
65	20	21	
70	20	20	
75	22	21	
80	26	23	

Source: Richards Consulting report on Pricing and Capital Management for Annuity Portfolios. Level annuity payable continuously to a single life. Pricing and assumed actual experience: (i) 4.50% annual interest rate, earned continuously; (ii) 100% of μ_x according to PMA92/PFA92, with no mortality improvements; (iii) 75bps margin offset to annual interest rate. Statutory reserving basis: (i) 40bps offset to realistic interest rate; (ii) 10% deduction from mortality table percentage; (iii) 5% EU solvency margin.

Slide 7

Reduced average IRR achieved if mortality experience is 10% lighter

Age at outset		R annum)	<u> </u>	in IRR annum)
	· –	Females	` –	
55	25	30	-2.3	-2.1
60	19	22	-3.6	-3.2
65	15	17	-5.3	-4.5
70	13	14	-7.2	-6.0
75	12	13	-9.8	-7.9
80	13	12	-13.2	-10.3

Source: Richards Consulting report on Pricing and Capital Management for Annuity Portfolios. Level annuity payable continuously to a single life. Pricing: (i) 4.50% annual interest rate, earned continuously; (ii) 100% of μ_x according to PMA92/PFA92, with no mortality improvements; (iii) 75bps margin offset to annual interest rate. Statutory reserving basis: (i) 40bps offset to realistic interest rate; (ii) 10% deduction from mortality table percentage; (iii) 5% EU solvency margin. Actual mortality experience is assumed to be 90% of pricing level.

Slide 8

How life offices approach longevity risk

- Rediscovery of longevity as a stochastic process
- Future lifetime is a random variable
- Identification of components of longevity risk
- Each component has a cost, and therefore a price

Sources of uncertainty over longevity risk

- 1. Concentration
- 2. Stochastic risk
- 3. Heterogeneity
- 4. Trend risk
- 5. Estimation risk

Concentration of risk

Scheme	Members	$\mathbf{Concentration}^*$
Ε	40	11%
Н	800	12%
С	$5,\!300$	6%

Largest scheme (C) pays 50% of all pensions to just 6% of members.

Source: Richards Consulting calculations using Prudential data.

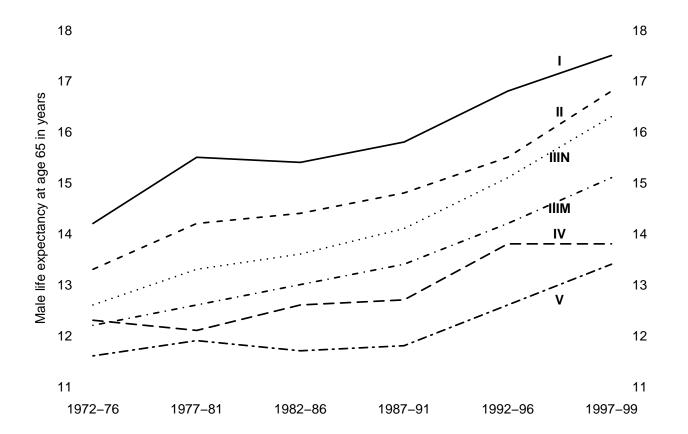
*Concentration is the percentage of members accounting for half of all pensions in payment.

Slide 11

Safety $premium^*$			
Scheme	95%	99%	
E	25.6%	37.2%	
Н	4.8%	6.7%	
\mathbf{C}	2.1%	3.0%	

Law of large numbers favours schemes with more members.

Source: Richards Consulting calculations using Prudential data.


*Safety premium is the extra funds above average in 10,000 simulations to ensure given probability of meeting all benefits in run-off according to PM/FA00 without any future improvements. Benefits valued at 2.5% per annum interest to allow for indexation.

Slide 12

Heterogeneity risk

- Lives not identical
- Longest-lived lives tend to be those with biggest liabilities
- Figures for stochastic risk are therefore under-estimates.

Retirement life expectancy by socio-economic group

Source: ONS Longitudinal Survey.

Slide 14

Basis	e_{65}	a_{65}
No improvements	16.53	12.85
Central projection	20.09	14.84
$95^{\rm th}$ percentile	20.92	15.28

- $\bullet~15.5\%$ extra reserves between 'no improvements' and central projection.
- Further 3.1% reserves between central projection and 95^{th} percentile.
- Trend risk not diversifiable like stochastic risk.

Source: Richards Consulting calculations using population data for males aged 20–100 in England & Wales between 1961 and 2003. Projection is P-spline with age and cohort penalties. Annuities calculated in arrears using 2.5%.

Slide 15

Estimation risk — Part I

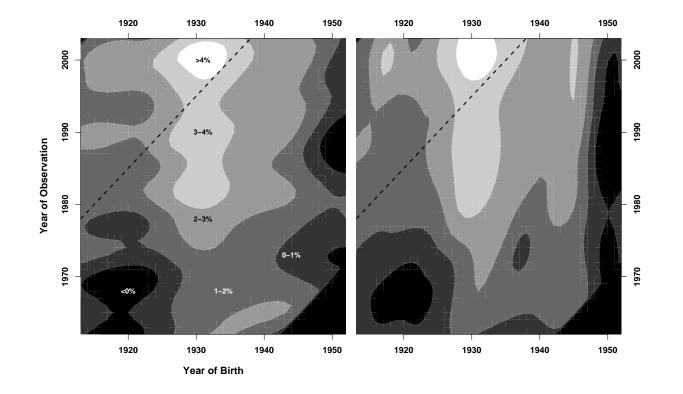
Financial impact of mortality rating factors

Factor	Step change	Reserve	Change
Base case	-	13.39	-
Gender	Female-male	12.14	-9.3%
Lifestyle	Top-bottom	10.94	-9.9%
Duration	Short-long	9.88	-9.7%
Pension size	Large-small	9.36	-5.2%
Region	South-North	8.90	-4.9%
Overall	-	_	-33.6%

Source: Richards and Jones (2004), page 39.

Slide 16

New developments and techniques


Mortality improvements by year of birth

Source: Own calculations with GAD interim life tables for 2000–2002 and 2001–2003.

Slide 18

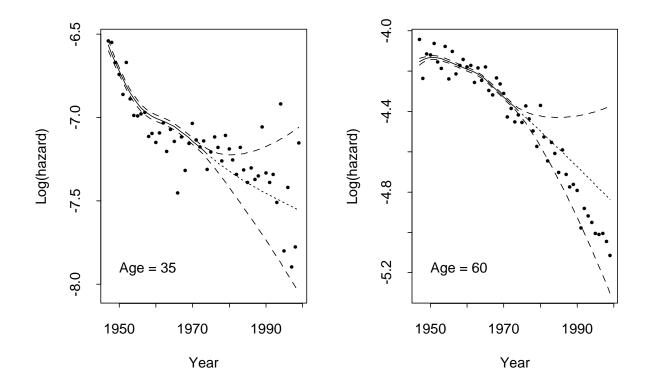
Mortality improvements

Source: Richards, Kirkby and Currie (2005). Male mortality improvements after smoothing mortality rates in two dimensions using penalised splines.

Slide 19

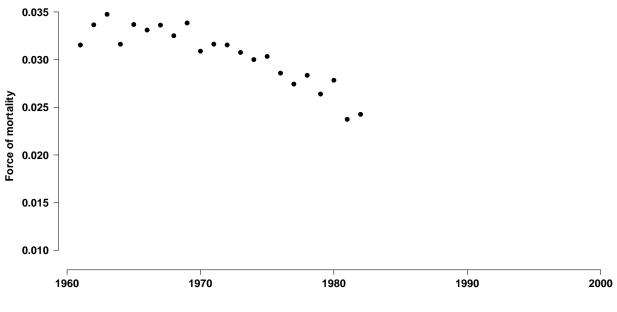
Mortality improvements

- Improvements accelerated over the past forty years
- Why would this stop soon?
- Do the peak improvements really lie in the past?
- Will improvements really tail off to zero in ten years?

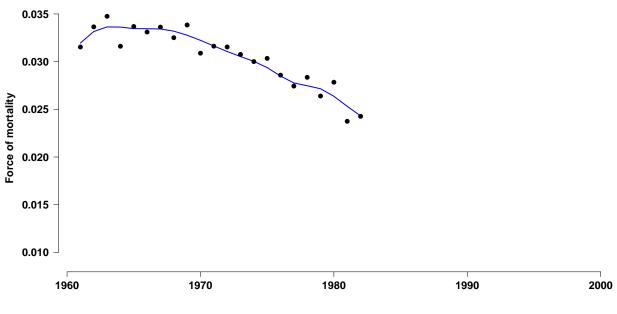

Back-testing projections

- What if we had these methods in the past?
- How good would they have been in predicting mortality?
- Subjective choice if a model fits the data better, we presume it will give better projections

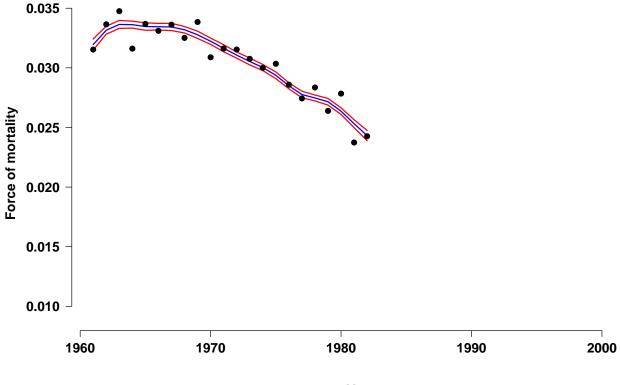
Back-testing P-spline projections

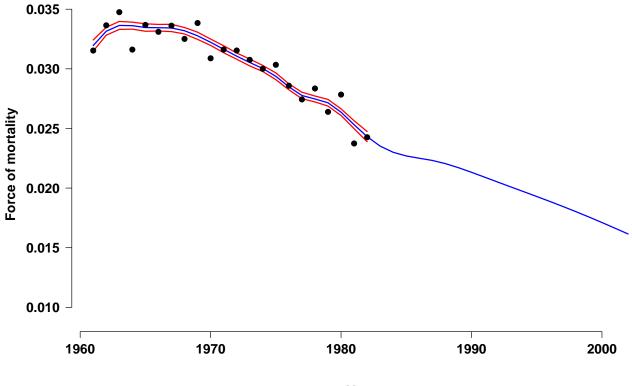

- Discard latter half of data
- Fit model to first half and project
- Compare projection with discarded half of data

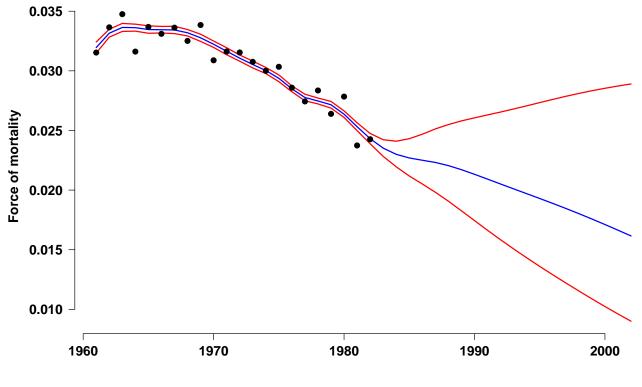
Back-testing P-spline projections

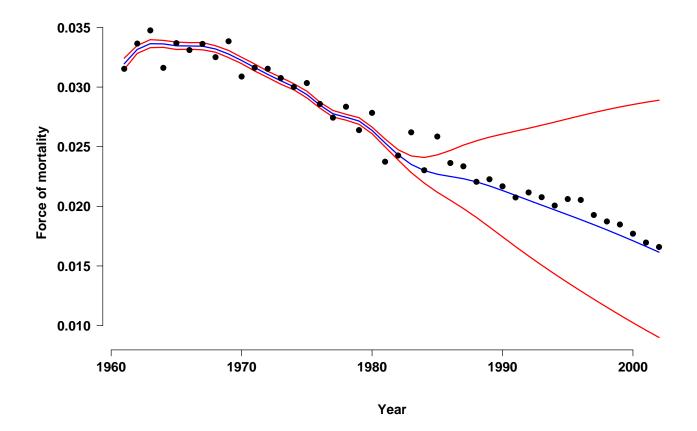


Source: I. D. Currie, Heriot-Watt University. P-spline projections with penalties across age and calendar time.


Slide 23


Year


Year


Year

Year

Year

Source: J. Hubbard, AXA Group Risk Management

Slide 29

Impact of improvements at age 65

Projection e_{65}

- Central projection 20.1
 - 2.5% percentile 19.1
 - 97.5% percentile 21.1

No improvements 16.5 PMA00 18.0

Source: Richards Consulting calculations using England and Wales population data for males with P-spline projection using age and cohort penalties for ages 20–100 between 1961 and 2003. Figures shown are complete years lived, i.e. curtate expectation of life.

Financial impact of improvements

Projection	a_{65}
Central projection 2.5% percentile 97.5% percentile	$15.84 \\ 15.32 \\ 16.36$
	10.05

No improvements 13.85 PMA00 15.56

Source: Richards Consulting calculations using England and Wales population data for males with P-spline projection using age and cohort penalties for ages 20–100 between 1961 and 2003. Annuity factors are annual annuities paid in arrears, discounted at 2.5%.

Financial impact of improvements

Projection	a_{65} relative to central projection
Central projection 2.5% percentile 97.5% percentile	$0\% \\ -3.3\% \\ +3.3\%$
No improvements PMA00	-12.5% -1.8%

Source: Richards Consulting calculations using England and Wales population data for males with P-spline projection using age and cohort penalties for ages 20–100 between 1961 and 2003. Annuity factors are annual annuities paid in arrears, discounted at 2.5%.

Estimation risk — Part II

- Several major life offices each have hundreds of thousands of annuitants
- Huge advantage in depth and breadth of experience data
- Increasing use of GLMs to model mortality

Relative strength of rating factors

Factor	Strength
Age	2,095
Gender	100
Lifestyle	51
Duration	25
Amount	8
Region	8

Source: Richards and Jones (2004), page 37.

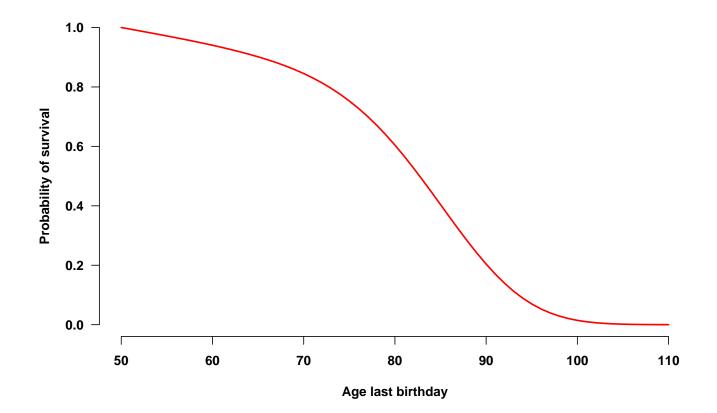
Slide 34

Financial impact of mortality rating factors

Factor	Step change	Reserve	Change
Base case	-	13.39	_
Gender	Female-male	12.14	-9.3%
Lifestyle	Top-bottom	10.94	-9.9%
Duration	Short-long	9.88	-9.7%
Pension size	Large-small	9.36	-5.2%
Region	South-North	8.90	-4.9%
Overall	-	-	-33.6%

Source: Richards and Jones (2004), page 39.

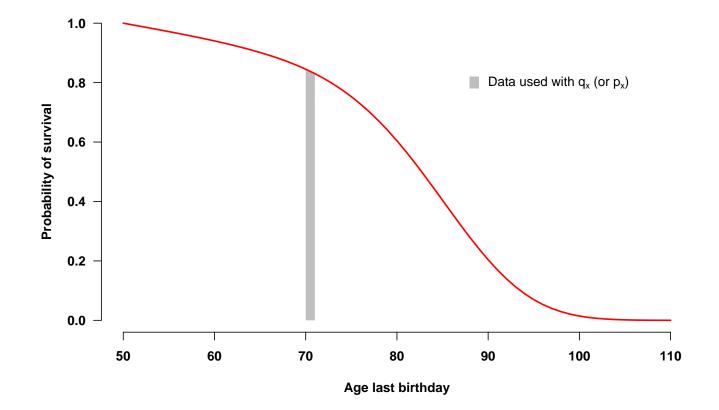
Slide 35


Limitations of a GLM

- Requires large volumes of data.
- Only a single year's experience can be used.
- Discards data on exact time of death.
- Cannot easily use fractional years' exposure.

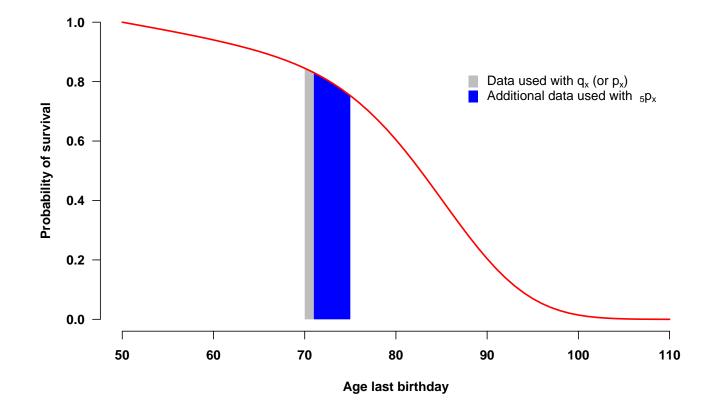
How to catch up with life offices

- Small boost from richer personal data, e.g. marital status
- Massive boost in power from consecutive years' data

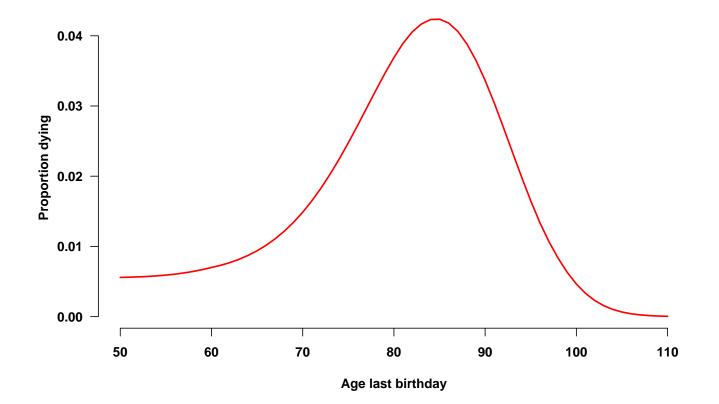

Survival curve under PMA00

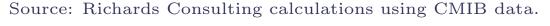
Source: Longevitas Ltd using CMIB data.

Slide 38


Survival curve under PMA00 — modelling q_x

Source: Longevitas Ltd using CMIB data.


Slide 39


Survival curve under PMA00 — modelling $_{tp_x}$

Slide 40

Distribution of age at death under PMA00

Slide 41

How to catch up with life offices

- Don't model $q_x \ldots$
- ... use $_t p_x$.
- Don't model death (dead v. alive)...
- ... model time until death, T.

Summary and questions

- Annuity business highly geared with volatile returns.
- Longevity risk complex with many components.
- New techniques boost mortality knowledge to life-office standard.
- Reprints of papers available at the front.

References

LONGEVITAS **2006** Modelling pensioner mortality, www.longevitas.co.uk RICHARDS, S. J. AND JONES, G. L. **2004** Financial aspects of longevity risk, SIAS

RICHARDS, S. J., KIRKBY, J. G. AND CURRIE, I. D. **2005** The Importance of Year of Birth in Two-Dimensional Mortality Data, Presented to Institute of Actuaries