Life Convention, Glasgow SECC

Longevity — risk and opportunity

Stephen Richards 6th November 2006

Copyright (c) Stephen Richards. All rights reserved. Electronic versions of this and other freely available papers and presentations can be found at www.richardsconsulting.co.uk

• Issues for the bulk buy-out market

- Issues for the bulk buy-out market
- Impact of socio-economic group...and how (not) to rate it

- Issues for the bulk buy-out market
- Impact of socio-economic group...and how (not) to rate it
- New techniques and tools

- Issues for the bulk buy-out market
- Impact of socio-economic group...and how (not) to rate it
- New techniques and tools
- GLMs and survival models

- Issues for the bulk buy-out market
- Impact of socio-economic group...and how (not) to rate it
- New techniques and tools
- GLMs and survival models
- Summary and questions

• Established players: Prudential, Legal and General

- Established players: Prudential, Legal and General
- Other insurers entering bulks market: NU, AIG, Aegon, Wesleyan

- Established players: Prudential, Legal and General
- Other insurers entering bulks market: NU, AIG, Aegon, Wesleyan
- Start-ups: Paternoster, Synesis, PIC.

- Established players: Prudential, Legal and General
- Other insurers entering bulks market: NU, AIG, Aegon, Wesleyan
- Start-ups: Paternoster, Synesis, PIC
- More to come: Lucida, Goldman Sachs...

Stochastic risk

Scheme	Members
${ m E}$	40
Н	800
\mathbf{C}	5,300

Source: Richards Consulting calculations using Prudential data.

^{*}Concentration is the percentage of members accounting for half of all pensions in payment.

Stochastic risk

S	Safety pi	remium*
Scheme	95%	99%
E	25.6%	37.2%
Н	4.8%	6.7%
\mathbf{C}	2.1%	3.0%

Law of large numbers favours schemes with more members.

Source: Richards Consulting calculations using Prudential data.

^{*}Safety premium is the extra funds above average in 10,000 simulations to ensure given probability of meeting all benefits in run-off according to PM/FA00 without any future improvements. Benefits valued at 2.5% per annum interest to allow for indexation.

The buy-out deficit

Pension	Funding
\mathbf{scheme}	level
1	94%
2	77%
3	88%
4	94%
5	93%

The buy-out deficit

Pension	Funding	Buy-out
scheme	level	level
1	94%	93%
2	77%	74%
3	88%	63%
4	94%	55%
5	93%	49%

Buy-out basis usually excludes discretionary pension increases, i.e. true buy-out deficit is at least as large as shown above.

Source: Richards Consulting and Barrie and Hibbert calculations using information from selected scheme statements in October 2006.

Scheme	e Members	s Concentration*	
E	40	11%	
Н	800	12%	
C	5,300	6%	

Largest scheme (C) pays 50% of all pensions to just 6% of members.

Source: Richards Consulting calculations using Prudential data.

^{*}Concentration is the percentage of members accounting for half of all pensions in payment.

• Lives not identical

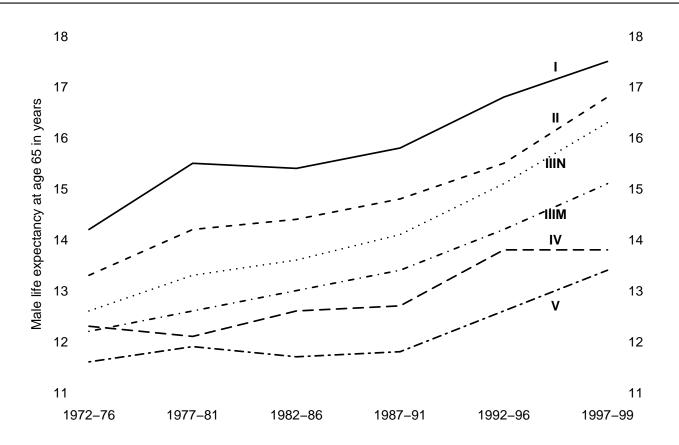
- Lives not identical
- Longest-lived lives tend to be those with biggest pensions...

- Lives not identical
- Longest-lived lives tend to be those with biggest pensions...
- ... and therefore with the biggest liabilities

- Lives not identical
- Longest-lived lives tend to be those with biggest pensions...
- ... and therefore with the biggest liabilities
- Rating socio-economic group *very* important in bulks business

Impact of socio-economic group

Retirement life expectancy by socio-economic group



Source: ONS Longitudinal Survey.

Financial impact of lifestyle

Financial impact of mortality rating factors

Factor	Step change	Reserve	Change
Base case	_	13.39	_
Gender	Female-male	12.14	-9.3%
Lifestyle	Top-bottom	10.94	-9.9%
Duration	Short-long	9.88	-9.7%
Pension size	Large-small	9.36	-5.2%
Region	South-North	8.90	-4.9%
Overall	-	_	-33.6%

Source: Richards and Jones (2004), page 39.

• Stakeholder fund of £8,583

- Stakeholder fund of £8,583
- Poor? Higher-mortality group?

- Stakeholder fund of £8,583
- Poor? Higher-mortality group?
- But AVC fund elsewhere of £42,808...

- Stakeholder fund of £8,583
- Poor? Higher-mortality group?
- But AVC fund elsewhere of £42,808...
- ... giving total fund of £51,391...

- Stakeholder fund of £8,583
- Poor? Higher-mortality group?
- But AVC fund elsewhere of £42,808...
- ...giving total fund of £51,391...
- ...so not poor and likely light mortality!

• Mortality group from postcode or address, not fund size

- Mortality group from postcode or address, not fund size
- Postcode is (much) better than "amounts"

- Mortality group from postcode or address, not fund size
- Postcode is (much) better than "amounts"
- Household (address) profiling is better still

New techniques and tools

• Mortality profiling

- Mortality profiling
- Marital-status modelling

- Mortality profiling
- Marital-status modelling
- P-spline projections

- Mortality profiling
- Marital-status modelling
- P-spline projections
- GLMs and survival models

• Personal profiling using full name and address

- Personal profiling using full name and address
- Mortality group assigned to matched households

- Personal profiling using full name and address
- Mortality group assigned to matched households
- Postcode-dominant mortality group where no household match

Life expectancy at age 65

\mathbf{Group}^*	Males	Females
1	20.4	22.9
2	19.8	22.4
3	19.1	21.7
4	18.7	21.5
5	17.9	20.8
6	17.4	20.6
7	16.1	19.3

Source: *Mortality Group, courtesy of Experian plc.

• Previous slide uses historical data

- Previous slide uses historical data
- How would this look if applied to actual 2005 experience*?

Source: *Portfolio of around quarter of a million immediate annuitants and bulk buy-out pensioners

Complete life expectancy at age 65

\mathbf{Group}^*	Males	Females
1	20.8	22.6
$\frac{1}{2}$	20.2	22.0 22.1
3	19.6	21.6
4	19.1	21.1
5	18.4	20.5
6	18.4	20.6
7	17.3	19.6

Source: Longevitas Ltd. Survival model of mortality experience of quarter of a million pensioners.

^{*}Mortality Group, courtesy of Experian plc.

• Spouse's benefit adds 12% to cost of single-life pension*

- Spouse's benefit adds 12% to cost of single-life pension*
- Proportion-married assumption could be 60–90%

- Spouse's benefit adds 12% to cost of single-life pension*
- Proportion-married assumption could be 60–90%
- Personal profiling can also model likely marital status

- Spouse's benefit adds 12% to cost of single-life pension*
- Proportion-married assumption could be 60–90%
- Personal profiling can also model likely marital status
- Less guesswork in setting proportion-married assumption

Source: *Richards Consulting calculations for level annuity to male aged 65 using PMA00 and 2.5% discount rate.

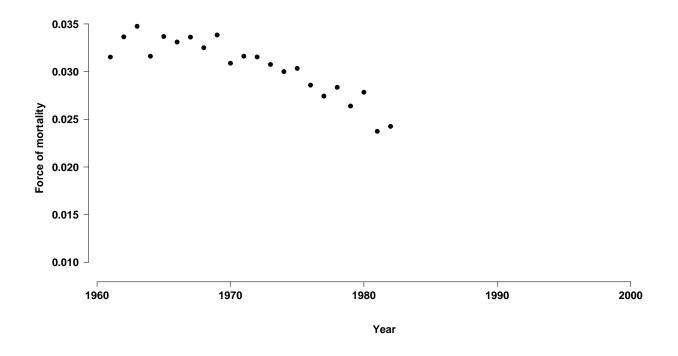
P-splines

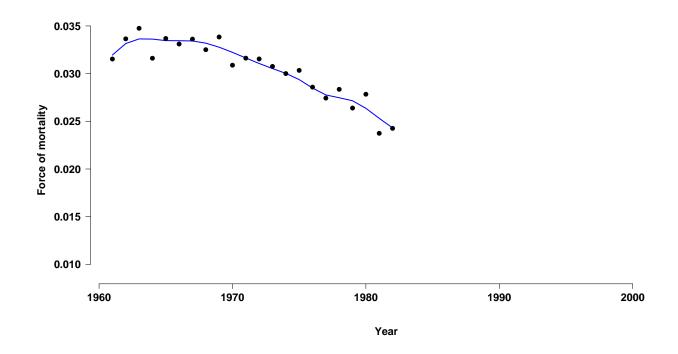
P-splines

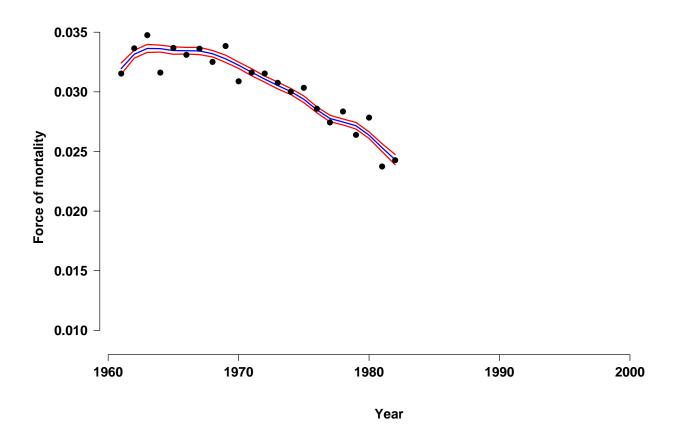
• P-spline software from CMIB Projections Working Party

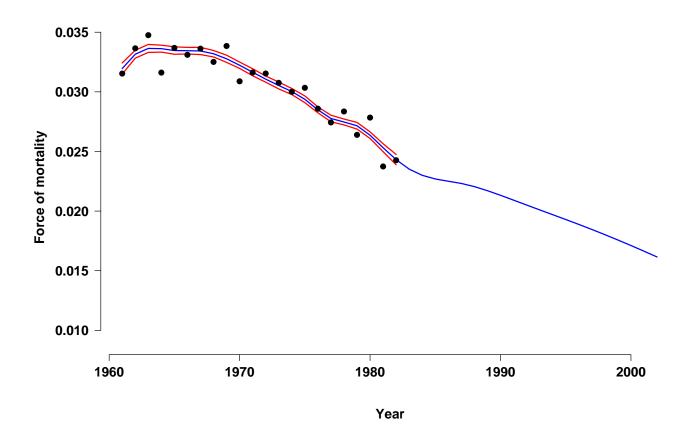
P-splines

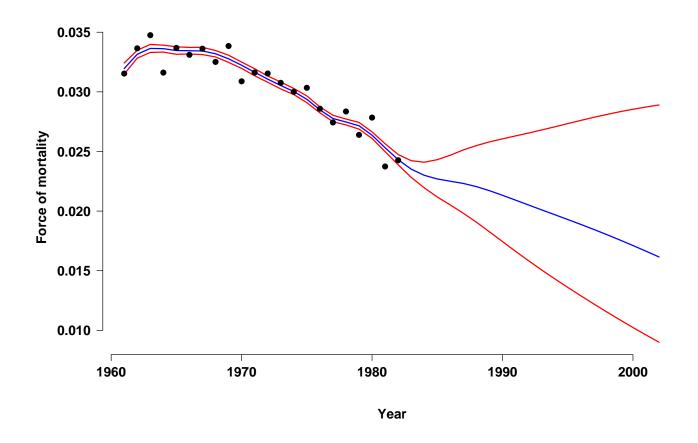
- P-spline software from CMIB Projections Working Party
- Central projections and percentile projections

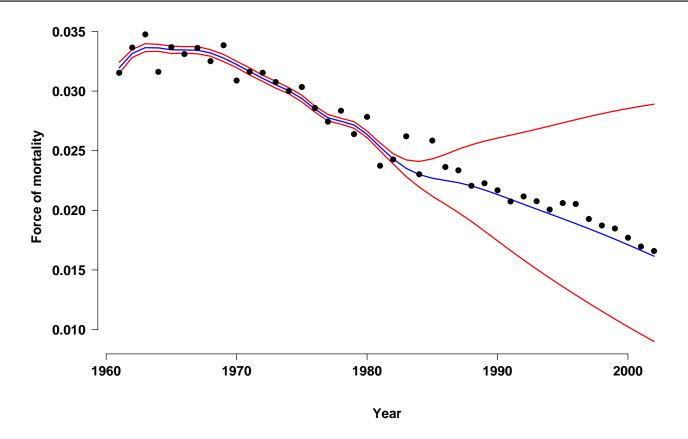












Source: J. Hubbard, AXA Group Risk Management

P-splines and trend risk

Basis	e_{65}	a_{65}
No improvements	16.53	12.85
Central projection	20.09	14.84
95 th percentile	20.92	15.28

- 15.5% extra reserves between "no improvements" and central projection.
- Further 3.1% reserves between central projection and 95th percentile.
- Trend risk not diversifiable like stochastic risk.

Source: Richards Consulting calculations using population data for males aged 20-100 in England & Wales between 1961 and 2003. Projection is P-spline with age and cohort penalties. Annuities calculated in arrears using 2.5%.

GLMs and survival models

• Widely used for analysing mortality data

- Widely used for analysing mortality data
- Simple structure

- Widely used for analysing mortality data
- Simple structure
- Fitted with free software (R at www.r-project.org)

• Simplest (but least useful) is Poisson count for deaths in a group:

$$D_x \sim \text{Poisson}(E_x^c \mu_{x+\frac{1}{2}})$$

• Simplest (but least useful) is Poisson count for deaths in a group:

$$D_x \sim \text{Poisson}(E_x^c \mu_{x+\frac{1}{2}})$$

• Most sophisticated (and useful) is *logistic regression* for individual data:

$$q_{x_i} = \frac{e^{\alpha_i + \beta_i x_i}}{1 + e^{\alpha_i + \beta_i x_i}}$$

• Simplest (but least useful) is Poisson count for deaths in a group:

$$D_x \sim \text{Poisson}(E_x^c \mu_{x+\frac{1}{2}})$$

• Most sophisticated (and useful) is *logistic regression* for individual data:

$$q_{x_i} = \frac{e^{\alpha_i + \beta_i x_i}}{1 + e^{\alpha_i + \beta_i x_i}}$$

• α_i and β_i are built up from risk components for individual i

What is a GLM

• Simplest (but least useful) is Poisson count for deaths in a group:

$$D_x \sim \text{Poisson}(E_x^c \mu_{x+\frac{1}{2}})$$

• Most sophisticated (and useful) is *logistic regression* for individual data:

$$q_{x_i} = \frac{e^{\alpha_i + \beta_i x_i}}{1 + e^{\alpha_i + \beta_i x_i}}$$

- α_i and β_i are built up from risk components for individual i
- GLM estimates parameters for risk components

• Require relatively large volume of data

- Require relatively large volume of data
- Discard data on exact time of death (a bit wasteful)

- Require relatively large volume of data
- Discard data on exact time of death (a bit wasteful)
- Only a single year's experience can be used (very wasteful!)

- Require relatively large volume of data
- Discard data on exact time of death (a bit wasteful)
- Only a single year's experience can be used (very wasteful!)
- Cannot easily use fractional years' exposure

• Want to model risk of survival (t_p) , not mortality risk (q_x)

- Want to model risk of survival (t_x) , not mortality risk (q_x)
- Want to use multiple years' experience

- Want to model risk of survival (t_p) , not mortality risk (q_x)
- Want to use multiple years' experience
- Want to use exact data on time of death

- Want to model risk of survival (t_p) , not mortality risk (q_x)
- Want to use multiple years' experience
- Want to use exact data on time of death
- Want to use fractional years of exposure

- Want to model risk of survival (t_p) , not mortality risk (q_x)
- Want to use multiple years' experience
- Want to use exact data on time of death
- Want to use fractional years of exposure
- Want to have similar parameters and interpretation to GLMs

• Model survival, i.e. $_tp_x$

- Model survival, i.e. $_tp_x$
- Use multiple years' experience

- Model survival, i.e. $_tp_x$
- Use multiple years' experience
- Use exact data on time of death

- Model survival, i.e. $_tp_x$
- Use multiple years' experience
- Use exact data on time of death
- Use fractional years of exposure

- Model survival, i.e. $_tp_x$
- Use multiple years' experience
- Use exact data on time of death
- Use fractional years of exposure
- Have similar parameters and interpretation to GLMs

Survival models: implementation

Survival models: implementation

• Simple models available (free!) in R (www.r-project.org)

Survival models: implementation

- Simple models available (free!) in R (www.r-project.org)
- Sophisticated models in commercial packages (e.g. Longevitas)

• Competition driving greater underwriting sophistication

- Competition driving greater underwriting sophistication
- Profiling reduces uncertainty in pricing mortality...

- Competition driving greater underwriting sophistication
- Profiling reduces uncertainty in pricing mortality...
- ...and spouse's benefits

- Competition driving greater underwriting sophistication
- Profiling reduces uncertainty in pricing mortality...
- ...and spouse's benefits
- GLMs increasingly used for risk analysis

- Competition driving greater underwriting sophistication
- Profiling reduces uncertainty in pricing mortality...
- ...and spouse's benefits
- GLMs increasingly used for risk analysis
- But already being replaced by survival models

References

Experian **2006** Longevity Risk Segments, www.experian.co.uk Longevitas **2006** Modelling pensioner mortality, www.longevitas.co.uk Richards, S. J. and Jones, G. L. **2004** Financial aspects of longevity risk, SIAS

RICHARDS, S. J., KIRKBY, J. G. AND CURRIE, I. D. **2005** The Importance of Year of Birth in Two-Dimensional Mortality Data, Presented to Institute of Actuaries