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Abstract

Parametric mortality models, such as survival models, permit detailed analysis of risk factors
for actuarial work. However, finite data volumes lead to uncertainty over parameter estimates,
which in turn gives rise to mis-estimation risk of financial liabilities. Mis-estimation risk can be
assessed on a run-off basis by valuing the liabilities with alternative parameter vectors consistent
with the covariance matrix. This run-off approach is especially suitable for tasks like pricing
portfolio transactions, such as bulk annuities, longevity swaps or reinsurance treaties. However,
a run-off approach does not fully meet the requirements of regulatory regimes that view capital
requirements through the prism of a finite horizon, such as Solvency II’s one-year approach. This
paper presents a methodology for viewing mis-estimation risk over a fixed time-frame and results
are given for a specimen portfolio. As expected, we find that time-limited mis-estimation capital
requirements increase as the horizon is lengthened or the discount rate is reduced. However, we
find that much of the so-called mis-estimation risk in a one-year value-at-risk assessment can
actually be driven by idiosyncratic variation, rather than parameter uncertainty. This counter-
intuitive result stems from trying to view a long-term risk through an short-term window.
We also find that parsimonious models tend to produce lower mis-estimation risk than less-
parsimonious ones.

Keywords: mis-estimation risk, level risk, annuities, longevity risk, survival model, Solvency II.

1 Introduction and motivation
When pricing or reserving for a block of insurance contracts, mortality assumptions are commonly
divided into two separate items: (i) the current level of mortality rates and (ii) projection of future
trends. For each basis element there are risks in getting the assumption wrong. For example, for
future trends there is no way of knowing if the chosen projection model is correct. This model risk
in forecasting is discussed elsewhere; see for example Cairns [1998] and Richards et al. [2020]. This
paper is concerned with the first basis element, i.e. the current level of mortality rates in a portfolio
and the estimation risk thereof.

In deriving an assumption for current mortality rates, a model must be proposed and calibrated
to the available experience data for the portfolio concerned. Using experience data unrelated to
the portfolio should be avoided as far as possible, since this could introduce bias from lives with
different mortality characteristics, i.e. basis risk. In this paper we will assume that a best-estimate
basis for a portfolio can be derived from its own experience data. Many approaches exist: from non-
parametric methods [Kaplan and Meier, 1958] to semi-parametric models [Macdonald et al., 2018]
to fully parametric models [Richards, 2012]. In each case there is a risk that the true underlying
mortality rates are different from the estimated rates due to sampling error. This risk is further
compounded by the tendency for liabilities to be concentrated in a relatively small sub-group of lives
(see Table 5, where over half of the pension payments are made to just a fifth of pensioners). These
risks — sampling error and concentration of liabilities — combine to produce uncertainty over the
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current mortality rates and a magnified impact on the value of the liabilities. This uncertainty is
variously labelled mis-estimation risk or level risk.

When pricing block transfers of risk, such as bulk annuities or longevity swaps, an insurer is
interested in the financial impact of mis-estimation risk over the entire lifetime of the portfolio. The
methodology in Richards [2016] provides the run-off view of mis-estimation risk required for such
tasks. However, regulatory frameworks like Solvency II view risk over a one-year horizon, not in
run-off. This paper adapts the pricing mis-estimation methodology of Richards [2016] to frame mis-
estimation risk in a short time horizon like 1–5 years. To illustrate the results we use the records of
a UK pension scheme described in detail in Appendix A.

The plan of the rest of paper is as follows: Section 2 defines various terms used; Section 3
describes the methodology for assessing mis-estimation, together with some basic validity conditions;
Section 4 describes how this methodology is adapted to view mis-estimation over a limited time
horizon; Section 5 outlines how models are structured, while Section 6 looks at specimen results
over various horizons; Section 7 considers the sensitivity to discount rate, while Section 8 looks at
variation with model type; Section 9 concludes.

2 Definitions
Denote by θ̂ the maximum-likelihood estimate of a parameter vector θ. Let θ̂

(n)
be the maximum-

likelihood estimate of θ from the addition of n years of further experience data. Denote by V (θ, y)
the value of life-contingent liabilities in-force at time y using the mortality rates effective at time y
according to the model specified by the parameter vector θ. We assume that all basis elements for
the calculation of V (θ, y) are known apart from the current mortality rates at y, i.e. that V (θ, y) is
a deterministic function of θ, but uncertainty is introduced through uncertainty over θ. Throughout
this paper mortality improvements will be modelled up to y, but no future mortality improvements
after y will be assumed — the mortality rates used will be those applying at y with no allowance for
future changes in time apart from the ageing of the lives assured. We are concerned in this paper
with a value-at-risk assessment of the mis-estimation risk in V (θ̂, y) only; for a value-at-risk approach
to longevity trend risk after time y, see Börger [2010], Plat [2011] or Richards et al. [2020].

The best-estimate of the liability at time y is taken to be the expected value, E[V (θ̂
(n)

, y)], which

for an unbiased model will equal E[V (θ̂, y)], ∀n. We value liabilities with θ̂
(n)

at time y, rather than
at time y+n, is because we are interested in the potential impact on current liabilities of n additional
years of experience after time y (a risk against which we can hold additional capital).

VaRα[V (θ̂
(n)

, y)] =
Qα[V (θ̂

(n)
, y)]

E[V (θ̂
(n)

, y)]
− 1 (1)

Pr[V (θ̂
(n)

, y) ≤ Qα[V (θ̂
(n)

, y)]] = α (2)

The risk measure of interest is VaRα[V (θ̂
(n)

, y)] de-
fined in equation (1), i.e. the proportion of the best-
estimate needed to cover a proportion α of losses that
might occur due to a change in the best-estimate as-
sumption caused by an additional n years of experience

data after time y. Qα[V (θ̂
(n)

, y)] is the α-quantile of the

distribution of liability V (θ̂
(n)

, y), which we will estimate according to Harrell and Davis [1982].

V (θ, y) =
∑
i

a(i, y,θ) (3)

a(i, y,θ) = wi

∫ ∞

0
tpxi,y,θv

tdt (4)

In the European Union (EU) the Solvency II regime for
insurer solvency calculations is based on n = 1 and α = 99.5%,

i.e. VaR99.5%[V (θ̂
(1)
, y)]. In this paper V will be the reserve for

a portfolio of continuously paid single-life annuities, as defined
in equations (3) and (4). In equation (4) wi is the level annuity
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paid to life i aged xi at time y and tpx,y,θ denotes the t-year survival probability at outset age x at
time y. vt is a discount function, which can be adapted to allow for escalating benefit payments if
necessary. In this paper we will mainly discount at a constant net rate of 0.75% per annum, applied
continuously, although Section 7 considers the impact of different discount rates.

3 Parameter risk and mis-estimation

We broadly recapitulate the mis-estimation methodology of Richards [2016]. We assume that we
have a log-likelihood function, �(θ), that is twice differentiable so that a Hessian matrix may be
calculated [McCullagh and Nelder, 1989, page 6]. The true underlying value of θ is unknown and is
denoted θ∗. The maximum-likelihood estimate of θ∗ is θ̂. Under the maximum-likelihood theorem
θ̂ ≈ N (θ∗, I−1), where I is the Fisher Information [Cox and Hinkley, 1996, Chapter 9]. In practice
we replace the unknown θ∗ with θ̂, i.e. θ̂ ≈ N (θ̂, I−1). Parameter uncertainty is summarised in I−1,
i.e. not just the parameter variances along the leading diagonal but also the covariances between
parameter estimates [Richards et al., 2013, Table 14]. To explore parameter risk we can generate
an alternative parameter vector, θ′, that is consistent with the data and model from θ′ = θ̂ +Az,
where A is the Cholesky decomposition of I−1 and z is a vector of independent N (0, 1) variates of
the same length as θ.

For assessing mis-estimation risk in run-off Richards [2016] looked at the variation in V (θ′, y)
from repeated simulation of z. The alternative valuations were normalised by dividing by the mean
of the values for V and various quantiles computed to express mis-estimation risk as a percentage of
the expected reserve. There are several important conditions for a model to be suitable for this kind
of approach, and a summary overview is given in Table 1.

Table 1: Assumption checklist for mis-estimation methodology.

Assumption Potential problem Solution or check

Independent
lifetimes in
model-fitting and
simulation.

Multiple benefit records per individual,
leading to failure of independence
assumption and under-estimation of
parameter variance.

Deduplication of benefit records; see
Macdonald et al. [2018, Section 2.5].

Parameter
estimates have
multivariate
Normal
distribution.

Parameters not distributed as
multivariate Normal.

Plotting of marginal log-likelihoods
to check inverted quadratic shape; see
Figure 1.

Static mortality,
or time trends
allowed for.

Using multi-year data without allowing
for a time trend leads to false confidence
in estimate of current mortality.

Tests of fit by calendar year
[Macdonald et al., 2018, Section 6.5],
inclusion of time-trend parameter in
model (Figure 9).

Model suitable for
financial purposes.

Liabilities disproportionately
concentrated in small sub-group with
different mortality characteristics; See
Table 5.

Tests of fit by pension size
[Macdonald et al., 2018, Section 6.5]
or “bootstrapping” [Richards et al.,
2013, Section 8.3].
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4 A value-at-risk approach to mis-estimation

The methodology in Section 3 was used in Richards [2016] for what might be called pricing mis-
estimation, such as when transfering a block of liabilities. The experience data of the block up to
time y is used to calibrate a model for best-estimate purposes, and the pricing risk is represented by
the range of values for V consistent with θ̂ and the estimated covariance matrix, I−1.

Table 2: Parameter options for simulating lifetimes.

Parameter Parameter
vector risk Description

θ̂ No Maximum-likelihood estimate (MLE).

θ′ = θ̂ +Az Yes Perturbed MLE.

However, regulatory frame-
works like Solvency II view
risk over a fixed horizon, a
feature that is absent from
the run-off approach in Sec-
tion 3. We can however adapt
the methodology to an n-year
view of mis-estimation risk in two stages. In the first stage, we use the model to simulate the future
lifetimes of the survivors and truncate additional time lived for those surviving more than n years;
Richards [2012, Table 7] lists formulae for simulating future lifetimes under various mortality models.
As per Table 2, we have two options for simulation: we can either use the best-estimate parameters,
θ̂, or else we can use the perturbed parameters, θ′. Using the latter will increase the variability in
the survival times, and corresponds to what one would understand to drive mis-estimation. The only
point in this paper where we will not include parameter risk is in Section 6, where we will switch it
off to quantify the relevant contributions of parameter risk and idiosyncratic risk.

In the second stage, we take the real experience data up to time y, add the additional n years
of simulated pseudo-experience and refit the model; this will yield an alternative parameter vector,

θ̂
(n)

. θ̂
(n)

can be viewed as the response of the parameter estimates to n years of new experience
data, and we use it to value the liabilities at time y. We repeat this process of simulating lifetimes,
refitting the model and revaluing the liabilities to collect (say) 10,000 realisations of the liability
value, Vj, j = 1, . . . , 10, 000. The approach of repeatedly refitting models and revaluing liabilities
is necessarily computationally intensive, so we use parallel processing over 63 threads to reduce
run-times [Butenhof, 1997].

5 Model structure

� = −
∑
i

Hxi,yi(ti) +
∑
i

di log µxi+ti,yi+ti (5)

Hx,y(t) =

∫ t

0

µx+s,y+sds (6)

µx,y = eαi+βix+δ(y−2000) (7)

Following Macdonald et al. [2018] we use survival
models for individual lifetimes. We maximise the
log-likelihood shown in equation (5), where µx,y is
the mortality hazard at exact age x and calendar
time y. Life i enters observation at exact age xi

at time yi and is observed for ti years. di is an
indicator variable taking the value 1 if life i is dead
at observation time ti, and zero otherwise. Hx,y(t)
is the integrated hazard function, defined in equation (6). We have a wide choice of functional forms
for µx,y for post-retirement mortality; [Richards, 2012] reviews seventeen such models applied to the
mortality of UK annuitants. However, we start with the simple and familiar model of Gompertz
[1825] in equation (7), where the offset of −2000 is to keep the parameters well-scaled. δ represents
the portfolio-specific time trend; here it is common to all lives, but it could be interacted with any
risk factor (such as with gender to estimate separate time trends for males and females).
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αi = α0 +
m∑
j=1

α(j)z
(j)
i (8)

βi = β0 +
m∑
j=1

β(j)z
(j)
i (9)

αi and βi are parameters for life i structured as in equations (8)
and (9), where α(j) is the main effect of risk factor j and β(j) is the

interaction of the jth risk factor with age. z
(j)
i is an indicator variable

taking the value 1 if life i has risk factor j and zero otherwise. Using the
data in Appendix A we fit a model with age, gender (male or female),
early-retirement status (pension commencing before or after age 55),
widow(er) status, pension size (below £5,385 p.a., £5,385-12,560 p.a. or above £12,560 p.a.) and
calendar time as explanatory variables. For multi-level factors we adopt a policy of making the most
numerous level the reference value, i.e. the baseline case is a male first life retiring after age 55
with a small pension. We therefore have parameters for those retiring early, widow(er)s, females
and those with medium or large pensions. We estimate these parameter values by maximising the
log-likelihood in equation (5), with the results shown in Table 3. Of particular note are the different
mortality characteristics of those with the largest pensions. Uncertainty over the mortality of this
small sub-group has a disproportionately large impact on uncertainty over the liability value, V .

Table 3: Parameter estimates under the Gompertz [1825] model. The second column is θ̂ in the
sense of Sections 3 and 4, while the third column is the square root of the leading diagonal of I−1.
Source: own calculations fitting model in equations (5)-(9) to the data in Appendix A.

Standard Contributors:
Parameter Estimate error Z-value p-value Lives Deaths Years lived

Age (β0) 0.10097 0.0020 49.81 0 44,616 10,663 260,374.0
EarlyRetirement 1.1306 0.2572 4.40 0 8,848 1,305 49,681.6
EarlyRetirement:Age -0.011712 0.0035 -3.37 0.0007 8,848 1,305 49,681.6
Widow(er) 0.903570 0.2384 3.79 0.0002 9,183 3,285 51,643.6
Widow(er):Age -0.0098666 0.0029 -3.38 0.0007 9,183 3,285 51,643.6
Female -1.6377 0.2117 -7.74 0 25,541 5,693 150,089.0
Female:Age 0.014363 0.0027 5.35 0 25,541 5,693 150,089.0
Intercept (α0) -10.390 0.1618 -64.22 0 44,616 10,663 260,374.0
Medium pension -0.76801 0.2266 -3.39 0.0007 8,924 1,889 51,846.4
Large pension -2.7358 0.4985 -5.49 0 2,226 329 12,546.5
Medium pension:Age 0.0072229 0.0028 2.56 0.0104 8,924 1,889 51,846.4
Large pension:Age 0.028330 0.0062 4.60 0 2,226 329 12,546.5
Time (δ) -0.039991 0.0037 -10.72 0 44,616 10,663 260,374.0

We need to check the validity of our assumptions using the checklist in Table 1 before performing
any mis-estimation assessments. We have already deduplicated the data, as described in Appendix A,
so the independence assumption holds true.

Regarding the assumption of a multivariate normal distribution for the parameter estimates,
we can see in Figure 1 that all profile log-likelihoods are suitably quadratic around the maximum-
likelihood estimates. Note that the choice of horizontal scale is important, as it would be possible to
find a quadratic-like shape for even poor models by selecting a suitably narrow range; in contrast, in
Figure 1 the horizontal range is determined by the estimated standard error of the parameter.

Figure 2: “Signature” formed from
profile log-likelihoods in Figure 1.

Since we are only interested in detecting exceptions to the
quadratic shape, we can create a space-saving “signature” for
the profile log-likelihoods in Figure 1 by plotting them one after
another without labels to see if there are any that do not have a
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Figure 1: Profile log-likelihoods around estimates in Table 3. The horizontal scale is determined by
two standard errors on either side of the joint maximum-likelihood estimate of each parameter.
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cleanly inverted U-shape. Figure 2 shows how this approach summarises the shapes in Figure 1 in a
single short “signature”. This approach becomes particularly useful when the number of parameters
grows large. For an example where a parameter fails this quadratic test, see the signature for the
Makeham-Perks model in Table 4.

Figure 3: Deviance residuals by pension size-band
(1 ≡ 5% of lives with smallest pensions, 20 ≡ 5% of
lives with largest pensions).
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Figure 4: Distribution of 10,000 simulations of
V (θ′, 2010) for model in Table 3 applied to survivors
at 1st January 2010 for portfolio in Appendix A.
Mortality rates are at 1st January 2010 with no fur-
ther improvements.
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The model in Table 3 has a time-trend pa-
rameter, so the only remaining item to check
is financial suitability. Figure 3 shows that
the residuals by pension size-band are plausibly
drawn from a N(0,1) distribution [Macdonald
et al., 2018, Section 6.5]; the apparent outlier
is of minimal financial significance. Further-
more, the bootstrapping procedure of Richards
[2016, Section 8.3] shows that on average the
model in Table 3 predicts 100.1% of lives-based
mortality and 98.9% of amounts-based mortal-
ity. The model is therefore broadly suitable for
financial purposes, and so all four validity cri-
teria in Table 1 are fulfilled.

Before considering the value-at-risk ap-
proach to mis-estimation of Section 4, we first
consider the run-off approach of Section 3. Fig-
ure 4 shows the distribution of reserves with
10,000 simulations of the parameter column in
Table 3. The 99.5% point of the distribution
is 2.61% above the mean, with a 95% con-
fidence interval of 2.55–2.67%. On a run-off
basis, the mis-estimation capital requirement
would therefore be around 2.6%.

The run-off approach to mis-estimation is
useful for setting a confidence interval on the
pricing basis for a bulk annuity or longevity
swap. For a best-estimate basis, the mean of
the distribution in Figure 4 can be back-solved
to a given percentage of a chosen table (or done
separately for the reserves for males and fe-
males). For example, if we use the S2PA table
[CMI Ltd, 2014] the equivalent best-estimate
percentages are 109.7% for males and 100.1%
for females. We can further use the 2.5% and
97.5% points of the distributions to form a
95% confidence interval for this basis: back-
solving leads to 95% confidence intervals of
103.6–116.3% for males and 95.3–105.0% for females. Note that the confidence interval is not sym-
metric around the central estimate in part because the distribution of reserves is not normal — the
p-value of the test statistic from Jarque and Bera [1987] is 0.2581 for males, but 0.0009158 for females.
This means that one cannot automatically assume normally-distributed risk for mis-estimation.
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6 The role of VaR horizon and parameter risk

Figure 5: Mis-estimation VaR99.5%[V (θ̂
(n)

, 2010)]
capital requirements with and without parame-
ter risk in simulation of additional n years of
experience data. 95% confidence intervals are
marked with −. Source: 10,000 simulations of
model valuing single-life immediate-annuity cash-
flows discounted at 0.75% p.a.
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Figure 6: Distribution of 10,000 simulations of

V (θ̂
(1)
, 2010) for model in Table 3 applied to sur-

vivors at 1st January 2010 for portfolio in Ap-
pendix A. Mortality rates are at 1st January 2010
with no further improvements.
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With the model from Section 5 we turn to the
question of the n-year value-at-risk capital as-
sessment. Figure 5 shows the mis-estimation
capital requirements for the portfolio described
in Appendix A. The impact of horizon, n, is
shown both with parameter risk (simulating life-
times with θ′ as per Table 2) and without (sim-
ulating lifetimes with θ̂ only). The capital re-
quirements without parameter risk are fairly flat,
as the simulated experience is similar to the real
data. In contrast, the capital requirements in-
cluding parameter risk rise with increasing hori-
zon; most of this difference is driven by the un-
certainty over the experienced time trend, which
makes the estimate of mortality levels at 1st Jan-
uary 2010 more uncertain.

A comparison of the two series in Figure 5
shows the relative role of parameter risk over a
short horizon and reveals an oddity: the value

of VaR99.5%[V (θ̂
(1)
, 2010)] would be used for the

purposes of Solvency II mis-estimation capital,
yet most of the capital requirement is clearly
driven by the idiosyncratic variation in the sim-
ulated experience, not parameter risk: we have
1.27% with parameter risk, but we still have
1.08% without it. The run-off or pricing mis-
estimation assessment at the end of Section 5
was driven solely by estimation error in θ, but
85% of the one-year VaR mis-estimation capi-
tal stems from idiosyncratic risk. This counter-
intuitive aspect of the value-at-risk approach is
not an outlier: Kleinow and Richards [2016, Ta-
ble 5] found that most of the value-at-risk capital
for longevity trend risk was similarly driven by
the simulated experience, not parameter risk.

Figure 6 shows the distribution of V (θ̂
(1)
, 2010)

from which VaR99.5%[V (θ̂
(1)
, 2010)] was calcu-

lated. As with Figure 4, we can use percentiles
to back-solve to a percentage of a standard table:
the 99.5% reserves for males and females equate
to 106.1% of S2PA for males and 97.0% for females. Compared with the central estimates in Sec-
tion 5, a shorthand 99.5% stress for Solvency II mis-estimation risk would then be -3.6% of S2PA for
males and -3.1% for females (larger portfolios would likely have smaller mis-estimation stresses).
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7 The role of discount rate

Figure 7: Mis-estimation VaR99.5%[V (θ̂
(n)

, 2010)] capital re-
quirements at various discount rates. Source: 10,000 simu-
lations with parameter risk of model fitted to data for UK
pensioner liabilities in Appendix A.
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Figure 7 shows the VaR mis-
estimation capital requirements us-
ing various discount rates. For a
given horizon, risk capital increases
as the discount rate falls. Mis-
estimation assessments clearly need
to be regularly updated as the shape
or level of the yield curve changes.

With historically low interest
rates and inflation-proofed defined-
benefit pensions, annuity liabilities
for bulk buy-outs will at times have
to be valued using a net nega-
tive discount rate, implying higher
mis-estimation capital requirements
than those in Figure 7.

8 The role of mortality law

µx,y =
eα+βx+δ(y−2000)

1 + eα+βx+δ(y−2000)
(10)

µx,y =
eα+βx+δ(y−2000)

1 + eα+βx+ρ+δ(y−2000)
(11)

µx,y =
eε + eα+βx+δ(y−2000)

1 + eα+βx+δ(y−2000)
(12)

The results in this paper have so far all been based on the Gom-
pertz [1825] mortality law. In this section we explore some alter-
native mortality laws, starting with the simplified logistic model
from Perks [1932] in equation (10). It has the same number of
parameters as the Gompertz law, but captures the tendency for
log(mortality) to increase less slowly than linearly at advanced
ages; see Barbi et al. [2018] and Newman [2018] for the ongoing
debate as to the validity of this phenomenon. Individual mor-
tality differentials are handled in the same way as the Gompertz
model with equations (8) and (9). A variation on the logistic
Perks law is the model from Beard [1959] shown in equation (11). The Beard and Gompertz laws
are linked: if individual mortality follows a Gompertz law, but there is also Beta-distributed

log µx,y = αh00(t) +m0h10(t) + ωh01(t) (13)

Figure 8: Hermite basis splines for t ∈ [0, 1].
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heterogeneity in α, then observed mortality
will follow the Beard law; see Horiuchi and
Coale [1990]. Another variation on equa-
tion (10) is to add a constant Makeham-like
term [Makeham, 1860], as in equation (12).

A more recent option is the Hermite-
spline model of Richards [2020] in equa-
tion (13), where the Hermite basis-spline h
functions are shown in Figure 8. Hermite
splines are defined for t ∈ [0, 1] and so we
map age x onto [0, 1] with t = (x−x0)/(x1−
x0) with pre-defined values of x0 = 50 and
x1 = 105. We assume µx = µx0 , x ≤ x0 and
µx = µx1 , x ≥ x1.
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This new class of Hermite-spline models is highly parsimonious. It was specifically designed
for modelling post-retirement mortality such that mortality differentials automatically narrow with
increasing age. This reduces the number of parameters compared to the other four models, and
further avoids the crossing-over of fitted mortality rates at advanced ages; see Richards [2020, Section
1]. Individual mortality differentials are therefore handled with just equation (8) — narrowing age
differentials are handled automatically and so there is no need for equation (9) with the Hermite
family.

Richards [2020] modelled age-related mortality changes with a peak improvement at an age to be
estimated from the data. Here we instead extend equation (13) for time variation as follows:

log µx,y = (α + δ(y − 2000))h00(t) + (m0 +mtrend
0 (y − 2000))h10(t) + ωh01(t) (14)

where δ plays a similar role to equations (10)-(12) by changing the level of mortality in time and
mtrend

0 changes the shape at younger ages. A common feature to both parameters is the automatic
reduction in influence with age when multiplying by the Hermite spline functions h00 and h10. We
find that δ in equation (14) does not improve the fit for the data set in Appendix A, so we use this
simpler version:

log µx,y = αh00(t) + (m0 +mtrend
0 (y − 2000))h10(t) + ωh01(t) (15)

Figure 9: Modelled percentage mortality improvements per annum by
age. Source: own calculations of 100%× (1− µx,2001/µx,2000) for male
first lives with the smallest 75% of pensions who retired after age 55.
The period covered by the data is 2001–2009.
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Equations (7), (10), (11),
(12) and (15) are there-
fore all one-parameter ap-
proaches to changes in mor-
tality level. Figure 9 shows
the implied annual mortality
improvements for the base-
line combination of risk fac-
tors in Table 3 (the im-
plied improvements under
the Beard model are not
shown as they are indis-
tinguishable from the Perks
model). Each model has a
single-parameter allowance
for mortality change, but
clearly some models have a
more reasonable shape for
improvements by age than
others. At one extreme the
Gompertz model in equa-
tion (7) has an unrealis-
tic constant rate of im-
provement at all ages, while
perhaps the most realistic
shape of all is from the Her-
mite model of equation (15).
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Figure 10: Mis-estimation VaR99.5%[V (θ̂
(n)

, 2010)] capital require-
ments for various mortality laws. Source: 10,000 simulations with
parameter risk of model fitted to data for UK pensioners, single-life
immediate-annuity cashflows discounted at 0.75% p.a.
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Figure 10 shows the mis-
estimation capital require-
ments for each of the five
models. We see that the par-
simony of the Hermite model
in equation (15), and the
more-realistic allowance for
improvements in Figure 9,
result in less mis-estimation
risk and thus less capital.
Table 4 shows that there are
no unwelcome compromises:
the Hermite model has the
lowest AIC of the five, while
having an ability to predict
lives- and pension-weighted
variation as good as any of
the other models.

Table 4: Summary of model fits. Note that one of the Makeham-Perks parameters, ε, does not have
a properly quadratic profile in the log-likelihood signature, although the impact is minimal. Source:
own calculations fitting to data in Appendix A; bootstrap percentages are the mean ratio of actual
deaths v. model-predicted deaths from 10,000 samples of 10,000 lives (sampling with replacement).

Mean bootstrap
Equation Parameter Log-likelihood percentage:

Mortality law number count profile signature AIC (a) lives (b) pensions

Gompertz (7) 13 79,642.7 100.1% 98.9%
Perks (10) 13 79,637.6 100.0% 99.3%
Beard (11) 14 79,625.6 100.1% 99.0%
Makeham-Perks (12) 14 79,624.8 100.0% 99.0%
Hermite (15) 10 79,623.4 100.1% 99.2%

9 Conclusions

A value-at-risk approach to mis-estimation risk can be obtained by (i) fitting a suitable mortality
model, (ii) repeated simulation of additional experience with this model, and (iii) refitting the model
and valuing the liabilities with the updated parameters. Quantiles can be calculated from the liability
distribution, and can be used to back-solve stress tests expressed in terms of a standard table. We
find that the resulting capital requirements for short time horizons are very different from a run-
off approach that might be used for pricing. At the shortest horizon of one year, much of the
capital requirement stems from the idiosyncratic variation in portfolio simulation, not the parameter
risk underlying the original model. This counter-intuitive result arises from the somewhat artifical
regulatory need to view risk through a one-year prism — a risk defined in terms of parameter
uncertainty ends up being quantified in a manner where parameter uncertainty plays a surprisingly
small role. We find that parsimonious models with realistic allowance for trends in the data tend to
produce lower mis-estimation capital requirements.
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Appendices

A Description of portfolio and data preparation
We have individual records for survivors and deaths in a local-authority pension scheme in England &
Wales, and we follow the data-preparation steps outlined in Macdonald et al. [2018, Chapter 2]. The
data fields available for each record are as follows: date of birth, gender, commencement date, total
annual pension (either at death or at the date of extract), end date, postcode, National Insurance
(NI) number, employer sub-group and whether the pensioner was a child, main life or widow(er) (C,
M or W, respectively). The end date was determined differently for deaths, temporary pensions,
trivial commutations and survivors to the extract date. For deaths, the end date was the date of
death. For children’s pensions and trivial commutations the end date was the date the pension ceased
or was commuted. For the other survivors, the end date was the date of extract at the end of April
2010. To avoid bias due to delays in reporting of deaths, only the experience data to end-2009 was
used. A check of death counts suggested that the earliest usable start date for the experience data
would be late spring 2000. However, in order to balance the seasons, we start the exposure period
on 1st January 2001 and end on 31st December 2009. To use an exposure period with unequal
representation of each season we would need to incorporate a seasonal term in the model [Richards,
2020, Section 8].

Figure 11: Distribution of deaths (top)
and time lived (bottom) for 2001–2009 after
data validation and deduplication.
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There were 55,169 benefit records available before
deduplication, of which 21 were rejected due to cor-
rupted dates. Of the remaining 55,148 records, 12,832
were marked as deaths. However, life-office annuitants
often have multiple benefits and this phenomenon is
also present in pension schemes. In both cases it is nec-
essary to identify the individual lives behind the benefit
records to ensure the validity of the independence as-
sumption for statistical modelling. For this we need a
process of deduplication [Macdonald et al., 2018, Sec-
tion 2.5], and for this portfolio we used two composite
deduplication keys: the first was a combination of date
of birth, gender and postcode (which identified 1,814
duplicates) and the second was a combination of date
of birth, gender and National Insurance number (which
identified a further 191 duplicates). The highest num-
ber of records for a single individual was 7. A particular
business benefit of deduplication lies in creating a more
accurate picture of the liability for each life: during
deduplication the total pension across linked records is
summed. There were no instances where the alive-dead
status was in conflict among merged records. After
deduplication we had 53,143 lives, of which 14 had zero
exposure due to ending on the commencement date.
This gave 53,129 lives, of which 12,510 were deaths
(53,129=55,169-21-1,814-191-14). The resulting data
volumes are shown in Figure 11.
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Table 5: Data by pension decile. Pensions to early terminations are revalued at 2.5% p.a. to the end
of 2009. The impact of trivial commutations can be seen in the reduced exposure time for the decile
of the smallest pensions, S01.

Percentage
Revalued of total

pension p.a. (£) Exposure Pensions scheme
SizeBand From. . . . . .to Lives Deaths (years) (£million) pension

S01 0.00 537.87 5,314 1,090 52,332.8 1.6 0.7%
S02 537.87 963.68 5,313 1,595 70,624.0 4.0 1.8%
S03 963.68 1,464.66 5,313 1,538 70,053.0 6.4 3.0%
S04 1,464.66 2,063.94 5,313 1,507 73,249.5 9.3 4.3%
S05 2,063.94 2,763.69 5,313 1,431 75,705.0 12.7 5.9%
S06 2,763.69 3,602.49 5,313 1,388 77,726.7 16.8 7.8%
S07 3,602.49 4,649.55 5,313 1,174 77,333.2 21.8 10.1%
S08 4,649.55 6,202.61 5,313 1,106 75,465.2 28.5 13.2%
S09 6,202.61 9,009.18 5,313 959 71,680.9 39.4 18.2%
S10 9,009.18 104,751.71 5,311 722 67,329.9 75.3 34.9%

Total 53,129 12,510 711,500.2 215.9 100.0%

Pension-scheme benefits in the UK are increased from year to year. This creates a potential bias
problem for cases which terminated in the more-distant past, i.e. deaths and temporary pensions.
To put all pension values on the same footing, we need to revalue the pension amounts for earlier
terminations. Unfortunately, the formula is exceptionally complex and affects different tranches of
benefit accumulated at different times. We therefore opted for a broad-brush approach and revalued
early terminations by 2.5% per annum from the date of termination to the end of the period of
observation (the Retail Prices Index RPIJ increased by a geometric average of 2.49% over this period).

Figure 12: Kaplan-Meier survival curves from age 60
using formula from Richards [2012, Section 11]. Experi-
ence data 2001–2009.
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To check for corruption of records
related to paying benefits to surviving
spouses, Macdonald et al. [2018, Sec-
tion 2.10] recommend plotting the Kaplan-
Meier survival curves for males and fe-
males. Such corruption often goes unde-
tected by traditional actuarial comparisons
against a standard table, and Macdonald
et al. [2018, Figure 2.8] give an example of
a UK annuity portfolio that demonstrates
this kind of problem (it is also known to
occur in occupational pension schemes).
However, Figure 12 shows a clean separa-
tion of curves with the expected shape, so
there is no such issue for the records of this
pension scheme.
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