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Abstract

We present a model for post-retirement mortality where differentials automatically reduce
with increasing age, but without the fitted mortality rates for subgroups crossing over. Selection
effects are catered for, as are age-modulated time trends and seasonal variation in mortality.
Central to the model are Hermite splines, which permit parsimonious modelling of complex
risk factors in even modest-sized portfolios. The model is therefore suitable for the stand-alone
analysis of experience data for reinsurance, bulk annuities and longevity swaps. We also illustrate
the contrast between the statistical significance of a risk factor and its financial significance, and
discuss reasons why one might include risk factors like season that are not directly financially
significant.

Keywords: mortality convergence, mortality crossover, selection effects, age-modulated time trend,
seasonal variation.

1 Introduction and motivation
In a macro-economic environment of low discount rates, the current and future mortality rates of a
portfolio of insured lives assume greater actuarial importance. This is particularly the case where an
insurer takes on a block of liabilities en masse; examples include Part VII transfers of insured liabilities
from one UK life insurer to another, insurers writing large bulk annuities or reinsurers transacting
longevity swaps. In each case the (re)insurer has one chance at outset to correctly underwrite the
longevity risk of the lives covered; if this assessment fails, the (re)insurer will lose money unless future
mortality improvements are lower than priced for. The profitability of such transactions therefore
depends on the effective analysis of the portfolio’s mortality experience, which is the subject of this
paper. Projections of future mortality rates are dealt with elsewhere, see for example Cairns et al.
[2009].

We will take the stages of data preparation as given; interested readers can consult Richards
[2008] or Macdonald et al. [2018, pp20–44] for a detailed exposition of the steps necessary to validate,
deduplicate, profile and check the individual records of a portfolio. The first step thereafter is to
identify attributes that explain mortality differentials; see Madrigal et al. [2011] and Richards et al.
[2013] for examples of the risk factors available in different portfolios and territories. However, all
of these various risk factors share an important feature: their impact varies with age. Specifically,
the impact of most post-retirement risk factors decreases with age to the point where the differential
essentially vanishes. Indeed, the stronger the initial differential, the faster the rate of convergence.
This phenomenon is known to demographers as the compensation law of mortality; see Gavrilov and
Gavrilova [1991] for discussion and Gavrilov and Gavrilova [2001] for a theoretical justification. One
exception is gender, where the mortality differential between males and females still reduces with
age, but never entirely disappears, even at the most advanced ages [Tickle, 1997].
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Classical modelling of a reducing differential is achieved by fitting an age-interaction term with
the main effect. However, this presents a problem, as at some age the fitted mortality rates will
cross over. This is illustrated in Figure 1 for the Gompertz model [Gompertz, 1825] — by age 90,
the wealthier pensioners who started out with the lightest mortality are modelled as having heavier
mortality. This crossover arises purely because of the model structure, not because the data demand
it. While some might argue that crossover is theoretically justified [Gavrilov and Gavrilova, 2015],
in actuarial work it would not be prudent. Besides, if there is no real difference in mortality beyond
age 95, as we might suspect, the structure of the model may be distorting the fit at younger ages
which are of greater financial significance. The crossover phenomenon is of course not limited to the
Gompertz model, nor to models for µx — it arises with any model of a differential that is composed
of two separate parameters for the level and slope.

Figure 1: Mortality crossover in log µx for simple Gompertz model fitted
to lives in a UK pension scheme. Source: Macdonald et al. [2018, p120].
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A second issue is that the
estimated parameters for mor-
tality level and age slope are
usually highly correlated; see
Richards et al. [2013]. In partic-
ular, the two parameters tend to
be correlated such that the mor-
tality differential between two
sub-groups (apart from gender)
is zero at some point around age
95 or so. This suggests a high
degree of redundancy in the
age-slope parameter. For exam-
ple, in the case of the Gompertz
model the usual approach is to
have baseline mortality repre-
sented by parameters α0 and β0

thus:

log µx = α0 + β0x. (1)

If we have a set of m risk factors, R = {r1, . . . , rm}, say, then let αrj
represent the difference in

mortality level for risk factor rj and let βrj
represent the corresponding difference in the age slope.

The Gompertz mortality hazard for life i is therefore:

log µxi
=

(
α0 +

m∑
j=1

αrj
zi,j

)
+

(
β0 +

m∑
j=1

βrj
zi,j

)
xi (2)

where zi,j is an indicator variable taking the value 1 if life i has risk factor j, and zero otherwise. In
practice the convergence of mortality rates with age means that each βrj

is always of the opposite
sign to αrj

, and usually of a magnitude such that |αrj
/βrj

| ≈ 95. Not only do the values of βrj
cause

mortality crossover, but they are also redundant parameters because each βrj
could be replaced with

sgn(−αrj
)/95; the constant 95 is the age at which mortality differentials are effectively zero.

A third practical problem is signal strength: it is one thing to have enough data to detect
the existence of a mortality differential, αrj

, but more data are typically needed to estimate the
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corresponding change with age, βrj
. Thus, for smaller portfolios it is sometimes difficult to reliably

estimate βrj
, despite strong expectations of what its value is likely to be.

We therefore have three related issues with the classical modelling of age-varying mortality dif-
ferentials: (i) crossover, (ii) parameter redundancy, and (iii) signal detection. This paper presents
an alternative way to model mortality differentials that solves all three problems. In particular, the
presented approach describes age-varying mortality differentials with a single parameter, not two.
This eliminates parameter redundancy and, since there is no second parameter, it also avoids the
problem of weak signal detection. The nature of the model is such that it eliminates crossover by
default (although a determined modeller could still re-introduce it).

Section 2 of the paper gives a brief primer on Hermite splines, which are central to the paper.
Section 3 shows how Hermite splines are applied to the modelling of mortality by age, including
how a single parameter specifies a mortality differential with automatic convergence by age without
crossover.. Section 4 considers the special case of gender, while Section 5 considers other risk factors.
Section 6 shows how Hermite splines can further be used to model selection effects, while Section 7
shows how they can also be used to model age-modulated, time-based changes (improvements) in
mortality. Section 8 considers how and when one might allow for seasonal variation in mortality,
while Section 9 considers the contrast between the statistical and financial significance of a risk
factor. Section 10 concludes the paper. A summary overview of all the model parameters is given in
Appendix A, and there are some notes on implementation in Appendix B.

2 Hermite splines
Figure 2: Hermite basis splines for t ∈ [0, 1].
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A basis of Hermite splines in one dimension
[Kreyszig, 1999, p868] is a collection of four
cubic polynomial functions, as shown in Fig-
ure 2. Hermite splines have wide application
in computer graphics for drawing a smooth
path between two points. For given start and
end points, (0, p0) and (1, p1), say, the set
of smooth intermediate points {(t, p(t)), t ∈
[0, 1]} is given by a linear combination of the
Hermite basis functions shown in Figure 2:

p(t) = p0h00(t) + m0h10(t) + p1h01(t) + m1h11(t) (3)

where m0 is the initial gradient of the path leaving (0, p0) and m1 is the final gradient of the path
approaching (1, p1). Changing the values of m0 and m1 allows a wide variety of smooth paths to be
taken between the start and end points, as illustrated in Figure 3. The cubic Hermite polynomials in
Figure 2 can be alternatively expressed as Bernstein polynomials of order 3; see de Boor [2001, p89],
while equation (3) can also be expressed as a Bézier curve [Kreyszig, 1999, p868] with four control
points expressed in terms of p0, p1, m0 and m1.

3 Applying Hermite splines to mortality modelling by age
We now turn to the application of Hermite splines to mortality modelling. The notion of drawing a
smooth path between two points in Section 2 is analogous to the actuarial task of graduating a life
table. If we scale the age range of interest, [x0, x1], to the interval [0, 1], then the “smooth path” is
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Figure 3: Influence of m0 and m1 on the Hermite-interpolated path in equation (3) with p0 = −5 and
p1 = −0.36 in each of the four panels.
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the smoothed mortality hazard. We therefore define our model for the logarithm of the mortality
hazard as follows:

log µx = αh00(t) + m0h10(t) + ωh01(t) + m1h11(t), x0 < x < x1 (4)

where t = (x − x0)/(x1 − x0) and α, ω, m0 and m1 are parameters to be estimated. x0 and x1 are
limits set in advance by the modeller, e.g. the lower and upper limits of the age range for Hermite-
modelled rates. The h functions are the Hermite functions defined in the legend of Figure 2. In
practice most models for retirement mortality look like the second panel in Figure 3, and we use
a simple extrapolation of log µx = α for x < x0 and log µx = ω for x > x1; other approaches are
possible, but this assumption is simple and does not affect the crucial “no-crossover” property of the
Hermite family.

Table 1: The Hermite model family.
Model Parameters

Hermite I α, ω. m0 = m1 = 0
Hermite II α, ω, m0. m1 = 0
Hermite III α, ω, m1. m0 = 0
Hermite IV α, ω, m0, m1

Figure 3 shows that equation (4) offers plenty of flexibility
to describe log µx over the post-retirement age range: the first
panel is a straight line, i.e a Gompertz model for log µx, while
the second panel shows the sort of logistic curve typically seen
for log µx above age 50; see Perks [1932] and Beard [1959]. The
third and fourth panels of Figure 3 are not realistic patterns
for log µx, but they do demonstrate that the shape at one end
of the curve is only weakly affected by flexing at the other end. Indeed, Figure 3 shows that the
full, four-parameter Hermite model offers more flexibility than we strictly need for modelling late-life
mortality. Accordingly, we can eliminate unnecessary flexibility by implicitly setting some parameters
to zero, as shown in Table 1.

The Hermite-spline approach means that some of the parameters have a natural interpretation:
if we use a logarithmic scale in Figure 3, then p0 = log µx0 and p1 = log µx1 . As with many other
regression-type methodologies, the Hermite-spline approach allows extrapolation outside the range
of data, in particular to advanced ages like 120 to “close” a fitted life table. Indeed, bearing in mind
the paucity of data above age 105, analysts can often just set a value for p1 to reflect their own beliefs
with regard to what log µx1 is at the end of the life table; Gampe [2010] proposed a limiting value
of log 0.7 ≈ −0.36, but see Gavrilov and Gavrilova [2015], Barbi et al. [2018], Newman [2018a] and
Newman [2018b] for the vigorous ongoing debate as to whether a limiting value for log µx even exists.

To compare the Hermite model fits in this paper we also need a comparison benchmark. In a
survey of seventeen alternative models for the mortality experience of a large UK annuity portfolio,
Richards [2012] identified the Makeham-Beard model as the best-fitting; this is a reparameterised
version of the model proposed by Perks [1932]:
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log µx =
eε + eα+βx

1 + eα+ρ+βx
(5)

where α, β, ε and ρ are parameters to be estimated.
The role of α in the models in equations (4) and (5) is very similar. In each case it is the

value of log µ0, and so is given the name “Intercept” (see Appendix A for further parameter-naming
conventions). If we have a set of m risk factors, R = {r1, . . . , rm}, say, then the operation of each
main effect is achieved by building an individual value of αi for each life thus:

αi = α0 +
m∑

j=1

rjzi,j (6)

which is the same as the first term in equation (2) — α0 is the baseline, rj is the differential for risk
factor j, and zi,j is a zero-one indicator variable for whether life i has risk factor j. The combination of
risk factors in αi therefore shifts log µx up or down by the same amount at each age for the Gompertz
model; in order to have an age-varying differential the Gompertz model needs an equivalent definition
for βi, as in equation (2). However, with the Hermite model the same definition of αi leads to a
reducing differential due to the shape of h00(t) in Figure 2. It is this crucial distinction that gives
the Hermite model automatic convergence with a single parameter, where traditional models like
Gompertz require two. To illustrate this, consider two lives who follow a Hermite mortality law, but
differ only in their main effects, i.e. life 1 has α1 = α0+

∑m
j=1 rjz1,j and life 2 has α2 = α0+

∑m
j=1 rjz2,j

as per equation (6). Crossover can only occur if the difference between log µ
(1)
x and log µ

(2)
x changes

sign at some age. However, under equation (4) we have:

log µ(2)
x − log µ(1)

x = (α2 − α1)h00(t), x0 < x < x1 (7)

where t = (x − x0)/(x1 − x0). As shown in Figure 2, h00(t) is a strictly positive decreasing function
over (x0, x1), and so the differential narrows but its sign never switches. Thus, mortality crossover
will not occur in the Hermite family of models when only the main effects differ. Mortality crossover
can only take place in a Hermite model when a main effect is interacted with a parameter other than
α in Table 8 in Appendix A.

Returning to our benchmarking exercise, in Table 2 we see that the Hermite family performs well
against the Makeham-Beard model for the experience data of a medium-sized pension scheme. In
contrast, the Gompertz model is a significantly poorer fit, as it under-states mortality at younger
ages and over-states it at the oldest ages. The models are all in age only, i.e. without any risk
factors, so the next task is to compare performance when allowing for gender. Before we do, we note
in passing that the Hermite models could be fitted to population mortality data as a sequence of
period models, and the parameters projected as a time series in a similar manner to the Gompertz
model in Cairns et al. [2006]. This is a topic for further research.

4 Modelling the gender mortality differential
In modern developed countries females have lower mortality rates throughout life, from birth to the
very oldest ages [Tickle, 1997]. However, at retirement ages the differential narrows with increasing
age [Richards, 2012, Figure 5]. Gender is therefore a tricky risk factor to model, as there are three
requirements: we want a clear differential, but one that reduces with age and yet never converges
entirely (or at least doesn’t converge until some very advanced age). In the case of the simple
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Table 2: Model comparisons with age as the sole risk factor (x0 = 50 and x1 = 110). The AICs [Akaike, 1987]
are for models fitted to the experience data of a medium-sized, public-sector pension scheme in Scotland,
ages 50-105 observed over the period 2000-2008 (3,488 deaths out of 16,780 lives with 100,092 life-years of
exposure time). The small-sample correction for the AIC is unnecessary for models with such a large number
of observations relative to the number of parameters [Macdonald et al., 2018, Table 6.1].

Parameter
Mortality law Function form for µx count AIC

Gompertz eα+βx 2 27,318.5

Makeham-Beard
eε + eα+βx

1 + eα+ρβx
4 27,276.3

Hermite I Equation (4) with m0 = m1 = 0 2 27,279.4
Hermite II Equation (4) with m1 = 0 3 27,280.9
Hermite III Equation (4) with m0 = 0 3 27,280.2
Hermite IV Equation (4) 4 27,275.4

Gompertz model this is impossible — if the model has a non-zero age interaction in equation (2),
then mortality rates will cross over. In the case of the Makeham-Beard model it is possible to achieve
the three desired aspects of gender mortality, but only by using a model with more interactions:
instead of just interacting the gender effect with the age parameter (β), we could also interact it with
the Beard parameter (ρ) and the Makeham parameter (ε). Table 3 shows a selection of models for
the gender differentials of the pensioners of a medium-sized Scottish pension scheme, while Figure 4
shows their behaviour graphically.

Table 3: Model comparisons with age and gender as risk factors (x0 = 50 and x1 = 110). AICs are for
models fitted to the same data as in Table 2. Figure 4 shows the corresponding fitted and extrapolated
mortality rates. In each case we have αi = α0 + αFemalezi,Female, plus the additional stated interactions.

Parameter
Mortality law Gender interactions count AIC

(a) Gompertz βi = β0 + βFemalezi,Female 4 27,233.7

(b)

Makeham-Beard





βi = β0 + βFemalezi,Female 6 27,193.7
(c) As (b), but also ρi = ρ0 + ρFemalezi,Female 7 27,195.6
(d) As (b), but also εi = ε0 + εFemalezi,Female 7 27,190.4
(e) As (c), but also εi = ε0 + εFemalezi,Female 8 27,191.1

(f) Hermite I



ωi = ω0 + ωFemalezi,Female

4 27,192.5
(g) Hermite II 5 27,193.2
(h) Hermite III 5 27,194.2
(i) Hermite IV 6 27,189.0

Figure 4(a) shows that the Gompertz model is incapable of allowing for age interactions without
crossover. Figure 4(b) shows that a simple age interaction with the Makeham-Beard model has less
pronounced crossover, but cannot properly express differentials at the youngest ages; interacting the
gender effect with both β and ρ in Figure 4(c) is only a modest improvement. The most satisfactory
Makeham-Beard model comes from an interaction of gender with both β and ε in Figure 4(d), while
the least-satisfactory Makeham-Beard model comes from an interaction of gender with β, ρ and ε
in Figure 4(e). This latter point is interesting because the least-satisfactory Makeham-Beard model
in visual terms is one of the best-fitting of the Makeham-Beard models in Table 3. This is because
goodness-of-fit statistics only measure fit where there are data, and by definition they cannot detect
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Figure 4: Selected models allowing for male-female differentials only (Table 3 compares the model fits).
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interaction with β and ε

60 80 100 120
−6

−4

−2

0

2

(e) Makeham-Beard,
interaction with β, ρ, ε

60 80 100 120
−6

−4

−2

0

2

(f) Hermite I

60 80 100 120
−6

−4

−2

0

2

Age, x

lo
g

µ
x

(g) Hermite II

60 80 100 120
−6

−4

−2

0

2

Age, x

(h) Hermite III

60 80 100 120
−6

−4

−2

0

2

Age, x

(i) Hermite IV

poor-quality extrapolations beyond the data region. An analogous point applies to projection models,
as goodness of fit to the data is no guarantee of a sensible projection; see Cairns et al. [2009].

Figures 4(f)-(h) show that the simpler Hermite models produce good extrapolations, but with
fewer parameters. When one considers that a difference in AIC of 4 or less is not statistically
significant, Table 3 shows that the Hermite and Makeham-Beard models all produce similar fits. As
expected, however, the Hermite IV model in Figure 4(i) is a little too flexible at the oldest ages,
producing an undesirable reduction in mortality above age 110 or so. This is a data artefact from
the small number of deaths above age 100, which could be dealt with either by restricting the age
range or, as in Figures 4(f) and (g), by dropping the m1 parameter where flexibility is unnecessary.
The simpler Hermite models I and II provide the best balance of goodness of fit, extrapolation to
higher ages and parsimony. As the number of risk factors in the model increases later in the paper,
the parsimony of the Hermite models will become ever more apparent.
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5 Modelling other mortality differentials

Figure 5: Hermite II model for log µx by gender and
pension size. The parameter estimates underlying the
curves are given in Table 4.
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In Section 4 we considered the special case of gen-
der, where differences in mortality are present at
even the most advanced ages and therefore of-
ten require an interaction with the Hermite ω
term to avoid these differentials vanishing. How-
ever, few mortality differentials are as persistent
at high ages as gender, so for most risk factors
a single parameter per main effect is all that is
required in the Hermite family. Figure 5 shows a
Hermite II model with age, gender and pension
size-band as risk factors. As expected, the mor-
tality differentials narrow with age but do not
cross over within a given gender, as they do with
traditional models. Table 4 shows just how par-
simonious this model is: with just six parameters
we have a model for age, gender and pension size-band, where differentials narrow with age but do
not cross over. Achieving this with traditional models would take more parameters, assuming that
they could even be supported by the data. However, Table 4 also shows a particular actuarial benefit
of the parsimony of the Hermite model: there are just 81 deaths amongst those with the largest 5% of
pensions. The mortality differential of this small-but-financially-key sub-group can only practically
support a single parameter, not the two or more required by traditional models. Further risk factors
can of course be added, with a single parameter allowing for age-varying differential without crossover
as before.

Table 4: Hermite II model for age, gender and pension size for data in Table 2. The fitted and extrapo-
lated mortality rates are shown in Figure 5. Source: own calculations using the methodology outlined in
Appendix B.3.

Standard
Parameter Name Estimate error Lives Deaths

m0 AgeGradientYoungest −1.49309 0.8204 16,780 3,488
αFemale Gender.F −0.559514 0.0821 9,433 1,752
ωFemale Gender.F:Oldest −0.123822 0.0909 9,433 1,752
α0 Intercept −4.45737 0.1445 16,780 3,488
ω0 Oldest −0.416038 0.0893 16,780 3,488
αLargest Pension.Largest −1.18428 0.1925 838 81

We use the deviance residuals [McCullagh and Nelder, 1989] to check the model fit in Table 4 —
these are plotted in Figure 6 using the procedure outlined in Macdonald et al. [2018, pp100–101] to
assess the fit of a survival model for individual lives. In Figure 6(a) we can see that the residuals
by age are a plausible N(0,1) scatter, and so we conclude that the basic model accounts for the age-
related patterns in mortality. However, Figure 6(b) shows that we still need to account for patterns
in mortality since pension commencement, which we consider in Section 6.
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Figure 6: Deviance residuals for the model in Table 4. The residuals are plausibly N(0,1) by age according
to (i) a χ2 test, (ii) a runs test, (iii) a standarised-deviations test test and (iv) a bias test [Macdonald
et al., 2018, pages 102–108]. However, the residuals by duration fail all four tests, indicating that there
are important unmodelled mortality patterns by the time since pension commencement. The data are left-
truncated, and bias may be introduced from a mortality-relevant event itself being the trigger for pension
commencement [Macdonald et al., 2018, pp.60–61].
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6 Selection

Figure 6(b) shows that we need to extend the model to allow for mortality patterns by time since
pension commencement; the negative residuals at shorter durations suggest selection effects of at
least ten years. We therefore extend the Hermite model with an allowance for selection as follows:

log µx,r = log µx +

{
θh00(u) + m2h10(u), r < r1

0, r ≥ r1

(8)

where log µx is defined in equation (4), r is the duration since the contract outset, u = r/r1 is the
duration in [0, r1] standardised to the interval [0, 1] and θ, m2 and r1 are parameters to be estimated.
θ is the initial selection (positive or negative), m2 is the initial direction of the selection effect and r1

is the selection term. After r1 there is assumed to be no selection, and the gradient of the selection
effect approaching r1 is also assumed to be zero. Extending equation (7) shows that the inclusion of
selection effects as per equation (8) does not affect the “no crossover” feature of the Hermite model
family.

Equation (8) contains three parameters to be estimated from the data: θ, m2 and r1. In many
circumstances it will be enough to set m2 = 0 and just estimate the other two parameters. We do
this for our Scottish pension scheme and find a surprisingly long selection term of r̂1 = 21.2892 years.
The resulting modelled selection effect is plotted in Figure 7 with the updated deviance residuals by
duration in Figure 8. The allowance for selection effects has improved the model fit and thus the
residuals.

However, with a short period of experience data there is always a risk of conflating cohort effects
[Willets, 1999] with true duration-based effects. We can allow for cohort effects by fitting the year
of birth as a risk factor, but this does not materially change either the selection term or the initial
selection effect. We also fitted a similar Makeham-Beard model and got a similar residual result to
Figure 6(b). We therefore conclude that this pension data set does indeed seem to have a surprisingly
long selection term.
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Figure 7: Addition to log µx in respect of selec-
tion effects. For the Scottish pension scheme θ̂ =
−0.32334 and r̂1 = 21.2892 (m2 was left implicitly
zero for simplicity).
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Figure 8: Deviance residuals by duration. In con-
trast to Figure 6(b), all four residual tests are
passed, suggesting that we have allowed for the most
important aspects of mortality patterns by time
since pension commencement.
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7 Age-modulated time trend
In Section 1 we discussed the difficulty in estimating age-varying mortality differentials with modest
amounts of data. It is even trickier to estimate any time-based variation in small portfolios —
exposure periods are often only a handful of years long, and the improvements we are trying to
detect are weak compared with the impact of the risk factors. As with the approach to narrowing
differentials by age, we need a solution that uses the minimum of parameters to robustly allow for
whatever mortality improvements might be detectable in the portfolio experience data.

Figure 9 shows the annual improvement rates for males and females in the populations of the
UK and the Netherlands. The shape of improvements can be broadly described as follows: (i) an
initial rate of improvement at the youngest age, (ii) a peak rate of improvement at a central age, and
(iii) improvements tailing off to zero at some age just above 100. We can model this by defining x2

as the age below which mortality improvements are deemed to be constant at rate φ, x3 as the age
above which improvements are zero, and κ as the peak rate of change at age s1 in the range [x2, x3].
This simple model will not capture all the flexibility exhibited in Figure 9, but it will reproduce the
essential features. In any case, the subtler shape variations in Figure 9 will not be detectable with
the limited amount of data typically available for most portfolios.

The Hermite model for age-modulated time trend in mortality is as follows:

log µx,r,y = log µx,r +




φy, x ≤ x2

[φh00(v1) + κh01(v1)] y, x2 < x ≤ s1

κh00(v2)y, s1 < x ≤ x3

0, x > x3

(9)

where log µx,r is defined in equation (8) and y is calendar time in years (usually after deducting
an offset like 2000 or 2010 to keep the other parameters well-scaled; see Richards [2008]). v1 =
(x − x2)/(s1 − x2) is the age in the range [x2, s1] standardised to the interval [0, 1], while v2 =
(x − s1)/(x3 − s1) is the age in the range [s1, x3] standardised similarly. φ, κ and s1 are parameters
to be estimated. Extending equation (7) shows that the inclusion of an age-modulated time trend as
per equation (9) does not affect the “no crossover” feature of the Hermite model family.
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Equation (9) has three parameters, which may be more than can be supported by portfolios with
only a modest amount of experience observed over a few years. Under such circumstances it would
make sense to drop φ, i.e. implicitly set it to zero and just use the two-parameter age-modulated
time trend involving κ and s1. This is shown for our Scottish pension scheme in Figure 10, where
the time-trend effect is weaker than the UK population time trend in Figure 9.

Figure 9: Average annual change in log µx over the period 2000–2010.
Difference in log µx,y smoothed using P -splines for population data.
Source: own calculations using 2D P -spline model applied to national
data from Human Mortality Database.
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Figure 10: Age-modulated time-
trend in equation (9) for pension
schemes in (a) Scotland and (b)
the Netherlands. Males and fe-
males combined.
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8 Seasonal variation
Seasonal variation in mortality is a well-established phenomenon in the UK and elsewhere. It is not
just a feature of mortality in the colder climes of Northern Europe either — Figure 11 shows persistent
seasonal variation in mortality in Australia over a twenty-year period. Seasonal mortality is highest
in the winter, so the peaks in the Southern Hemisphere are shifted approximately six months relative
to the peaks observed in the Northern Hermisphere. Figure 12 further shows that certain causes of
death exhibit particularly strong seasonal patterns, such as circulatory and respiratory causes, while
others have no meaningful seasonal variation, such as cancer. Seasonal patterns in mortality exist at
all ages, but Figure 13 shows that the fluctuations are greater as age increases.

Seasonal patterns in mortality are strong, but they obviously balance over longer periods of time.
Allowing for seasonal variation will therefore seldom directly impact long-term liabilities, so it might
not seem worthwhile including them in a model for actuarial calculations. However, it can be useful
to allow for them to permit seasonally unbalanced exposure periods when examining time trends. For
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Figure 11: Percentage of average daily number of deaths in Australia, all causes, 1979–1999. All-cause
winter mortality peaks at around 110-120% of the average level. Source: de Looper [2002].
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Figure 12: Percentage of average daily number of deaths for selected causes in Australia, 1979–1999. Source:
de Looper [2002].
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Figure 13: Deaths in England and Wales by month of occurrence and age group as percentage of June
count, 2015–2017, showing that seasonal variation increases with age. Note that, as a territory in the
Northern Hemisphere, the seasonal peak in mortality is offset by around half a year compared to the
Southern Hemisphere in Figures 11 and 12. Source: Own calculations using data from ONS.
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example, consider the example where a cedant makes experience data available from 1st January 2014
to September 2019 for a transaction planned to conclude on 31st December 2019. The reinsurer wishes
to analyse the improvements in the portfolio to see if they are consistent with the improvements in
the pricing basis. Figure 11 shows that an analysis without seasonal effects will need to include equal
numbers of each season to avoid biasing the estimated trend. An analysis without seasonal effects
would therefore compel the reinsurer to discard part of the experience data to balance the seasons,
thus losing potentially useful information. However, if the analysis includes a seasonal effect, then
more of the experience data can be used without biasing the estimated trend.

To allow for seasonal variation in mortality, we can define a cyclic factor for the mortality hazard.
Figure 13 shows that we should perhaps consider an age-related amplitude, given the propensity for
seasonal fluctuations to increase with age. However, for simplicity we start with an age-independent
approach. The Hermite mortality hazard with selection, time trend and seasonal variation is therefore
defined as follows:

log µ∗
x,r,y = log µx,r,y + eζ cos (2π(y − τ)) (10)

where τ represents the proportion of the year after January 1st when mortality peaks and where
eζ is the peak additional mortality at that time (on a logarithmic scale). Extending equation (7)
shows that the inclusion of an age-modulated time trend as per equation (10) does not affect the “no
crossover” feature of the Hermite model family.

The definition of equation (10) is such that there will be recurrent mortality peaks at τ +k, k ∈ Z
and equivalently-sized mortality troughs at τ + k

2
. Since equation (10) is for an addition to log µx,

this means that the mortality hazard will be multiplied by a seasonal factor that fluctuates smoothly
around unity during the year. In the Northern Hemisphere τ̂ will typically take values in (−0.1, 0.2),
while in the Southern Hemisphere τ̂ will typically take values in (0.4, 0.7). Table 5 shows the seasonal
mortality for six different portfolios in Northern Europe, where the peak winter mortality of 111–122%
of the baseline level corresponds closely to the amplitudes of the peaks in Figure 11.

Table 5: Seasonal peak mortality for six portfolios in Northern Europe. Source: own calculations using
Hermite models for age, gender and season.

Peak mortality:

Country Portfolio nature Period covered ζ̂ τ̂
(a) as %
of average

(b) time
of year

Scotland Pension scheme 1998–2007 −1.62 0.092 122% Feb 1st

UK Insurer annuities 2009–2012 −2.00 0.001 114% Dec 30th

England Pension scheme 2002–2012 −2.02 0.071 114% Jan 25th

Netherlands Pension scheme 2006–2012 −2.25 0.055 111% Jan 19th

England Pension scheme 2000–2013 −2.29 0.048 111% Jan 16th

UK Insurer annuities 1998–2007 −2.27 0.086 111% Jan 30th

The cosine approach in equation (10) is by no means the last word on modelling seasonal variation.
Figure 13 shows that we could usefully extend equation (10) to include variation by age, while
Figure 11 suggests that the mortality peaks in winter are spikier than the shallower summer troughs.
These are both topics for future research.

9 Statistical v. financial significance
The models fitted in this paper are survival models for individual lifetimes. Although these are
statistical models, there are important features of actuarial data that statisticians do not often
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encounter; see Macdonald et al. [2018, pages 16–17] for an overview of the salient differences in data
for actuarial applications, and how these drive specific modelling requirements.

A further important difference between actuaries and statisticians lies in what counts as a sig-
nificant risk factor. Statistical significance can be defined as the change in an information criterion
exceeding a threshold value, as in the third column of Table 6. However, a risk factor for mortality
can be statistically significant without being financially significant. An example is the seasonal effect
in Table 6, which has a large statistical impact (the AIC improves by 36.3) and yet makes the smallest
change to the discounted cashflow valuation. One reason to nevertheless include all statistically sig-
nificant risk factors is enhancement [Currie and Korabinksi, 1984], i.e. the phenomenon whereby the
inclusion of a risk factor in a model increases the explanatory power of risk factors already present.
A risk factor that is not directly financially significant on its own may nevertheless be indirectly
financially significant through modulating the action of other risk factors. Enhancement also makes
the changes in Table 6 dependent on the order of inclusion.

Table 6: Analysis of change in AIC and discounted cashflow valuation from adding risk factors. Cashflow
valuation is of annual pensions paid to survivors, discounted using a net 0% discount rate and with no
allowance for future mortality improvements, i.e. period rates until the model in the last line of the table.
Source: own calculations using the same pension scheme as Tables 2-4.

Change
in AIC

PV of cashflows (£m): Change in
total PVModel AIC Males Females Total

Hermite I, age only 27279.4 n/a 532.7 302.6 835.3 n/a
+gender 27192.5 −86.9 495.0 321.4 816.4 −18.9
+widow(er) status 27175.7 −16.8 495.8 328.4 824.2 7.8
+early-retirement status 27161.7 −15.9 485.6 324.6 810.2 −14.1
+pension size 27099.5 −62.2 538.5 333.6 872.1 61.9
+selection 27082.1 −17.4 534.7 328.3 863.0 −9.1
+season 27045.8 −36.3 532.3 326.8 859.1 −3.9
change from period mortality to forecast mortality:
+age-related time trend 27044.0 −1.8 579.5 352.9 932.4 73.3

A risk factor can also be financially significant without being statistically significant: an example
is the age-related time trend in Table 6, which is the least statistically significant of the risk factors,
yet it has the largest impact on the valuation of all factors bar age.

10 Conclusions
The Hermite family of mortality models provides a good fit to pensioner mortality data with auto-
matic convergence of differentials by age. The Hermite models are more parsimonious than traditional
models, as they do not need a second parameter for each differential to allow for convergence by age.
The simpler members of the Hermite family of models produce sensible extrapolations to ages where
data are sparse or non-existent. Hermite splines additionally allow parsimonious modelling of both
selection effects and age-modulated time trends in mortality rates. The modelling approach is ef-
ficient, allowing even modest-sized portfolios to have effective and robust bespoke mortality tables.
The criteria used by actuaries to decide on the risk factors in a model are different to those that might
be used by statisticians, however, as there is an important difference between statistical significance
and financial significance.
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Appendices

A Overview of model parameters

There are two kinds of parameters to be set for a Hermite model of mortality: (i) configuration
parameters, whose values are decided in advance by the analyst, and (ii) parameters whose values
are estimated from the data.

A.1 Parameters set by the analyst

Table 7 sets out the configuration parameters that need to be set in advance by the analyst, i.e. they
are not estimated from the data. The values used in the main body of the paper are given.

Table 7: Configuration parameters for the Hermite model family.

Parameter Value Description and role

x0 50 Age below which log µx is deemed constant in age; see Section 3
x1 110 Age above which log µx is deemed constant in age.
x2 50 Age below which log µx changes in time at constant value φ.
x3 105 Age above which log µx does not change in time; see Section 7.

A.2 Parameters estimated from data

Table 8 sets out the parameters whose values are estimated from the data, e.g. by maximising a
likelihood function such as equation (13) in Appendix B.

Table 8: Estimated parameters in the Hermite model family.

Parameter Name Description and role

α Intercept log(mortality) at and below age x0; see Section 3.
ω Oldest log(mortality) at and above age x1.
m0 AgeGradientYoungest Gradient of log(mortality) leaving age x0.
m1 AgeGradientOldest Gradient of log(mortality) approaching age x1.
r1 SelectionTerm Duration in years after which the selection effect is zero.
θ SelectionInitial Initial selection effect at duration zero; see Section 6.

m2 SelectionGradient Gradient (direction) of initial selection effect from duration
zero.

φ TrendYoungest Rate of change in time for mortality at age x2 and below; see
Section 7.

κ TrendPeak Peak rate of change in time for mortality at age s1.
s1 TrendPeakAge Age at which rate of change of mortality peaks with value κ.
ζ SeasonalExcess Amplitude of seasonal peak mortality from baseline (log

scale); see Section 8.
τ SeasonalPeak Time of year of peak seasonal (winter) mortality, expressed

as fraction of year from 1st January.
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B A general approach to fitting survival models
The models fitted in this paper are for the lifetimes of individuals, rather than grouped counts; the
benefits of doing this are discussed in Macdonald et al. [2018, pp 11–15]. One aspect of fitting models
to individual lifetimes is the requirement to integrate the hazard function. For many mortality models
this can be done explicitly; see Richards [2012, Tables 1 and 2] for the integrated hazard functions
for seventeen different models. However, not every integrated hazard function can be expressed in
a closed form, so numerical integration is sometimes required. This appendix describes how to fit
any survival model to any required level of accuracy, not just the Hermite models in this paper. All
that is required is a small number of partial derivatives of a single function, log µx, and a suitable
algorithm for numerical integration.

B.1 Introduction

Macdonald et al. [2018, p78] give the likelihood for a survival model based on n individual lifetimes
as follows:

L ∝
n∏

i=1

exp

(
−

∫ ti

0

µxi+sds

)
µdi

xi+ti (11)

where µxi
is the instantaneous mortality hazard for life i aged exactly xi at the start of observation.

di is an indicator variable taking the value 1 if life i is dead at age xi + ti, and zero otherwise. The
data are therefore left-truncated and right-censored.

It is usually more convenient to work with the log-likelihood function [Macdonald et al., 2018,
p79]:

� = −
n∑

i=1

∫ ti

0

µxi+sds +
n∑

i=1

di log µxi+ti (12)

Note that equations (11) and (12) are entirely specified by µx. Also, no specific form for µx is
required; the equations hold irrespective of the mortality law that applies.

B.2 Maximising the (log-)likelihood

To maximise the log-likelihood we want the gradients, i.e. the first partial derivatives with respect
to each parameter. We start by noting that equation (12) can be rewritten as follows:

� = −
n∑

i=1

(∫ ti

0

elog µxi+sds

)
+

n∑
i=1

di log µxi+ti (13)

Equation (13) emphasises that the entire log-likelihood depends only on log µx. In particular, even
if there is not a closed-form expression for the integral in equation (13), the log-likelihood can be
evaluated to any required level of accuracy using quadrature; see Press et al. [2005, pages 133–166],
Kreyszig [1999, pages 876-878], R Core Team [2013, integrate() function] or Macdonald et al. [2018,
pages 344–345].

The first partial derivative of equation (13) with respect to any parameter, θ, is therefore:

∂

∂θ
� = −

n∑
i=1

[∫ ti

0

elog µxi+s

(
∂

∂θ
log µxi+s

)
ds

]
+

n∑
i=1

di
∂

∂θ
log µxi+ti (14)
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Equation (14) holds because we can differentiate through the integral in equation (13), since the
limits of integration do not depend on the parameter being differentiated. As before, knowledge of
log µx and ∂

∂θ
log µx completely specifies the first partial derivative, and the integral in equation (14)

can be evaluated to any required level of accuracy using quadrature. All that is required is to work
out the first partial derivative of log µx with respect to each parameter. In the case of the Hermite
model in equation (4), log µx is linear in all the parameters and so these first partial derivatives are
trivial.

B.3 Information matrix (and thus covariance matrix)

We approximate the covariance matrix by inverting the negative information matrix [Richards, 2016,
Section 5]. We evaluate the information matrix as the Fisher information, i.e. the matrix of second
partial derivatives of the log-likelihood function [Macdonald et al., 2018, pp 83, 86]. We can repeat
the trick of differentiating equation (14) through the integral to get any second partial derivative
with respect to parameters θ1 and θ2 as follows:

∂2

∂θ1∂θ2

� = −
n∑

i=1

[∫ ti

0

elog µxi+s

[
∂2

∂θ1∂θ2

log µxi+ti +

(
∂

∂θ1

log µxi+s

) (
∂

∂θ2

log µxi+s

)]
ds

]

+
n∑

i=1

di
∂2

∂θ1∂θ2

log µxi+ti (15)

We already have log µx and the first partial derivatives of log µx from the gradient calculation in
equation (14). All that are additionally required are the second partial derivatives of log µx. As
before, we can use quadrature to evaluate the information matrix to any required level of accuracy,
even if we cannot derive closed-form expressions for the integral in equation (15). In the case of the
Hermite model in equation (4), log µx is linear in all the parameters, so the mixed second partial
derivatives are simply zero.
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