Heriot-Watt University webinar, Edinburgh Seasonal mortality

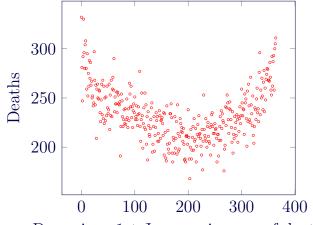
Stephen J. Richards 14th May 2020

Copyright © Longevitas Ltd. All rights reserved. This presentation may be freely distributed, provided it is unaltered and has this copyright notice intact.

www.longevitas.co.uk 1/40

Overview

- 1. Seasonal mortality
- 2. Modelling seasonal mortality
- 3. Seasonality and age
- 4. Shape of seasonal patterns
- 5. Seasonality by subgroup
- 6. Conclusions
- 7. About Longevitas


1 Seasonal mortality

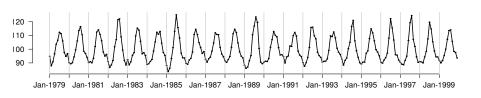
1 Mortality peaks in winter

Seasonality of date of death in six UK pension schemes.

Days since 1st January in year of death

Source: Richards et al. [2020]. The vertical scale excludes an outlier caused by leap years.

1 Mortality peaks in winter



- ONS defines winter as December-March in UK.
- Winter is different in southern hemisphere...

1 Seasonal mortality in Oz

Percentage of average daily number of deaths in Australia, all causes, 1979–1999.

Source: de Looper [2002].

1 Season and cause of death

- Seasonal mortality is a reliably recurring phenomenon.
- Previous slides show all-cause mortality.
- Picture is more interesting by cause of death...

1 Season and cause of death

Percentage of average daily number of deaths for selected causes in Australia, 1979–1999.

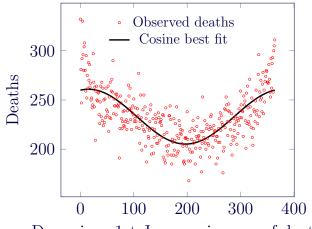
Source: de Looper [2002].

1 Season and cause of death

- Cancer has no strong seasonal pattern.
- Circulatory and respiratory causes have clear winter spikes.

2 Modelling seasonal mortality Congevitas

2 Modelling seasonal mortality Congevitas


- Past research done using grouped data.
- Using individual records is more powerful [Macdonald et al., 2018].
- What can be done with pension schemes and annuity portfolios?

2 Cosine approach

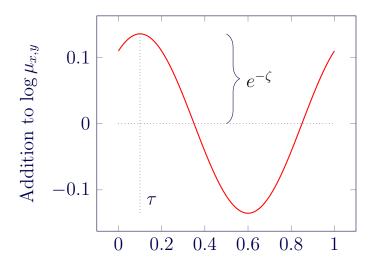
12/40

Seasonality of date of death in six UK pension schemes.

Days since 1st January in year of death

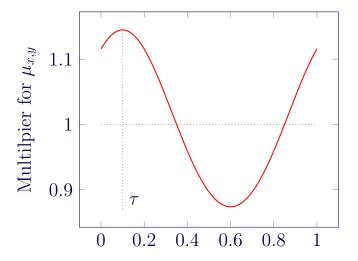
Source: Richards et al. [2020]. The vertical scale excludes an outlier caused by leap years.

2 Modelling seasonal mortality Congevitas


$$\log \mu_{x,y}^* = \log \mu_{x,y} + e^{\zeta} \cos \left(2\pi (y - \tau)\right) \tag{1}$$

- $\mu_{x,y}$ is force of mortality at age x at time y.
- \bullet τ is fraction of year after 1st January when mortality peaks.
- e^{ζ} is the amplitude of the mortality peak (log scale).

2 Cosine seasonal effect


Example addition to $\log \mu_{x,y}$ with $\tau = 0.1$ and $\zeta = -2$

2 Cosine seasonal effect

Example multiplier for $\mu_{x,y}$ with $\tau = 0.1$ and $\zeta = -2$

-2.89

-2.52

LONGEVITAS	
mortality	

106% 24th Feb

21st Feb

108%

	Seasonal	Seasonal	Peak mortality:	
	Excess	Peak	(i) as $\%$	(ii) time
Portfolio	$\hat{\zeta}$	$\hat{ au}$	of mean	of year
Canada	-2.34	0.0749	110%	27th Jan
England	-2.02	0.0708	114%	26th Jan
France	-2.42	0.0660	109%	25th Jan
Kuwait	-2.36	0.0178	110%	7th Jan
Netherlands	-2.25	0.0524	111%	20th Jan
Scotland	-1.88	0.0815	117%	30th Jan

0.1494

0.1420

Source: Richards et al. [2020].

Spain

USA

2 Seasonal mortality

- Consistent pattern across northern hemisphere.
- Peak mortality in late January/early February.
- Scottish portfolio has highest winter peak.

2 Seasonal mortality

- Picture different in southern hemisphere.
- Peak mortality in July...

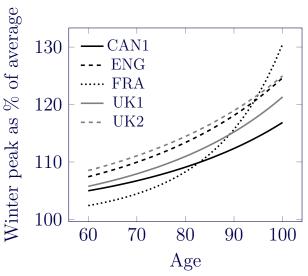
2 Peaks around the world

	Seasonal	Seasonal	Peak mortality:	
	Excess	Peak	(i) as $\%$	(ii) time
Portfolio	$\hat{\zeta}$	$\hat{ au}$	of mean	of year
Chile	-2.25	0.5560	111%	22nd July

Source: Richards et al. [2020].

3 Seasonality and age

3 Seasonal mortality by age


$$\log \mu_{x,y}^* = \log \mu_{x,y} + e^{\zeta + \xi(x-o)/10} \cos(2\pi(y-\tau))$$
 (2)

- ξ measures increasing amplitude with age.
- o is a normalizing constant (o = 70 here).

Source: Richards et al. [2020].

3 Peak mortality by age

Source: Richards et al. [2020].

3 Seasonal mortality by age

For large pensioner and annuity portfolios we can measure the increasing seasonal variation by age.

4 Shape of seasonal patterns

- Cosine function has same curvature for winter and summer.
- However, the winter peak is sharper than the summer trough.
- Replace $\cos t$ with $s(\psi, t)$:
- Choose $s(\psi, t)$ so that $s(0, t) = \cos t$.

$$\log \mu_{x,y}^* = \log \mu_{x,y} + e^{\zeta} s(\psi, y - \tau) \tag{3}$$

$$s(\psi, t) = \begin{cases} \psi \neq 0 &: 2\left[\frac{e^{\frac{\psi}{2}(1 + \cos t)} - 1}{e^{\psi} - 1}\right] - 1 \\ \psi = 0 &: \cos t \end{cases}$$
(4)

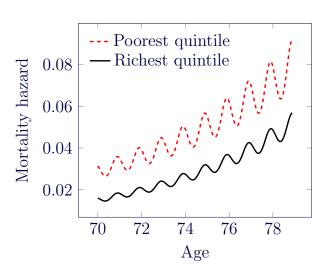
Source: Richards et al. [2020].

	Seasonal Excess	Seasonal Peak	Seasonal Shape:	
Portfolio	$\hat{\zeta}$	$\hat{ au}$	$\hat{\psi}$	
CAN1	-2.31	0.0719	2.11	\sim
CHL	-2.23	0.5464	1.93	$\wedge \wedge$
ENG	-2.00	0.0573	2.41	\bigvee
FRA	-2.38	0.0662	2.28	$\bigcirc \bigcirc$
KUW	-2.16	0.0105	6.02	\bigcup
UK1	-2.26	0.0638	2.37	\bigvee

Source: Richards et al. [2020].

- All portfolios have $\hat{\psi}$ significantly different from zero.
 - \rightarrow Can use pension-scheme data to quantify sharpness of winter peak in single statistic.

5 Seasonality by subgroup


5 Sub-groups

- No signficant difference between males and females.
- However, low-income UK pensioners experience greater seasonal swings...

5 Rich v. poor

Source: Richards et al. [2020].

6 Conclusions

6 Conclusions — I

- Mortality increases in winter.
- Phenomenon recurs reliably from year to year...
 ...and is present in every country.
- Winter spike caused by circulatory and respiratory deaths.

6 Conclusions — II

- Survival models can detect seasonality in pension schemes...
 - \dots and the sharpness of the winter peak \dots
 - ... and the increasing seasonality with age.
- No obvious link to gender...
 - ...but low-income pensioners more vulnerable.

- M. de Looper. Seasonality of death, volume Bulletin No. 3. Australian Institute of Health and Welfare, 2002. ISBN 978-1-74024-209-7.
- A. S. Macdonald, S. J. Richards, and I. D. Currie. Modelling Mortality with Actuarial Applications. Cambridge University Press, 2018. ISBN 978-1-107-04541-5.
- S. J. Richards, S. J. Ramonat, G. Vesper, and T. Kleinow. Modelling seasonal mortality with individual data. *Longevitas Ltd*, 2020.

7 Legal matters

Longevitas is a registered trademark for Longevitas Ltd:

- in the UK (registration number 2434941),
- throughout the European Union (registration number 5854518), and
- in the USA (Trade Mark Registration No. 3707314).

8 About Longevitas

8 Longevitas

- Founded 2006.
- Based in Edinburgh, Scotland.
- Provides tools to analyse, price and manage longevity risk.
- Research partnership with Heriot-Watt University.

8 Longevitas software

- Used in UK, USA, Canada and Switzerland.
- Used by insurers, reinsurers and consultancies.