Heriot-Watt University, Edinburgh

Pricing longevity risk

Stephen J. Richards 11th December 2019

Copyright © Longevitas Ltd. All rights reserved. This presentation may be freely distributed, provided it is unaltered and has this copyright notice intact.

www.longevitas.co.uk 1/63

Overview

- 1. Pension plans
- 2. About longevity risk
- 3. Risk factors for pricing
- 4. Location, location, location...
- 5. Significance
- 6. Convergence
- 7. Conclusions
- 8. About Longevitas

1 Pension plans

Definition

PRT = Pension Risk Transfer, the transfer of risk from a pension plan to an insurer

Some example contracts:

- A bulk annuity for a pension plan ('buy-in' or 'buy-out').
- A longevity swap.

(Index-based hedges appear a lot in the academic literature, but they are of little business relevance.)

1 British Airways (a.k.a. IAG) Longevitas

British Airways (BA) [...] agreed a £4.4bn buy-in with Legal & General — the largest pensioner bulk annuity transaction ever seen in the UK.

IPE.com, September 2018

1 British Airways (a.k.a. IAG) Congevitas

Why do this?

- The announcement refers to the *smaller* of the two company pension plans.
- The bigger plan had a deficit of £3.7bn in 2017.
- IAG's market cap. was just £10.1bn on 18th Oct. 2019...

Source: NAPS Annual Report and Financial Statements, 31 March 2018.

British Airways did not pay a dividend during its 2010 accounting year but contributed £364m to its pension scheme.

Lane, Clark and Peacock (2011)

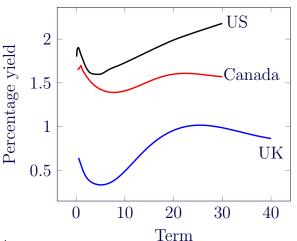
Pension schemes can be a *major* management distraction!

www.longevitas.co.uk 7/63

2 About longevity risk

Definition

Longevity risk is the risk that pensioners live longer than expected.

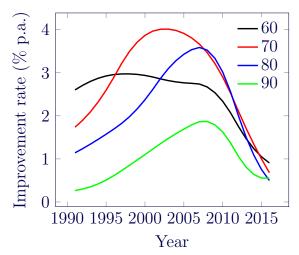

"Whereas a catastrophe can occur in an instant, longevity risk takes decades to unfold"

The Economist [2012]

Price in haste, repent at leisure...

Nominal spot yield curves for government debt, 25th September 2019. Sources: US Treasury, Bank of Canada and Bank of England.

Definition


 $\mu_{x,y} = \text{mortality hazard at age } x \text{ in year } y.$

Definition

Mortality improvement rate = $1 - \frac{\mu_{x,y}}{\mu_{x,y-1}}$

Mortality-improvement rates for UK males aged 60–90, 1991-2016. Source: Own calculations using HMD data.

www.longevitas.co.uk 12/63

Two key points:

- 1. Low interest rates mean that mortality rates are central to PRT profitability.
- 2. Low mortality-improvement rates mean assessing current mortality rates is critical.

2 Underwriting and basis risk Tongevitas

Definition

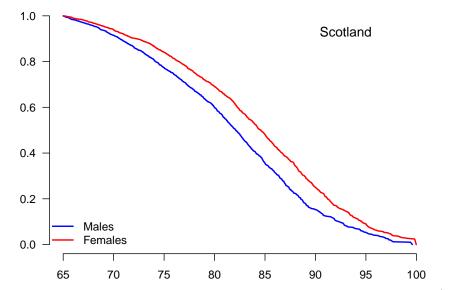
Underwriting is the process of assessing insurance risk.

Definition

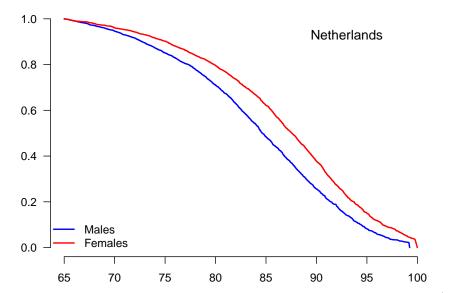
Basis risk stems from using data not directly related to the portfolio concerned.

Avoid basis risk by using only the portfolio's own experience data.

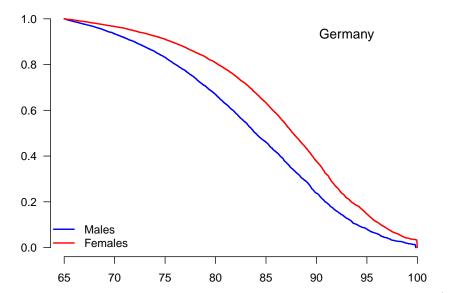
3 Risk factors for pricing



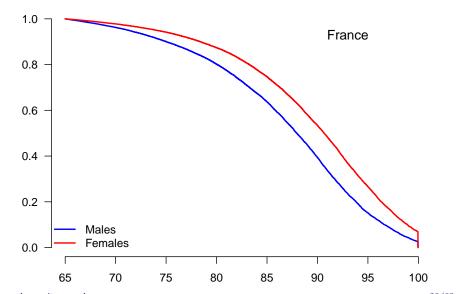
3 Risk factors


- Age and gender always available.
- Kaplan-Meier survival function a good test of data quality...

3 Scottish public-sector pensior Longevitas



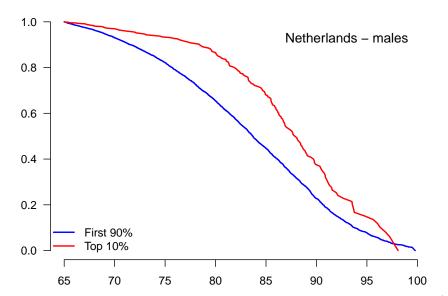
3 Dutch private-sector pension Longevitas



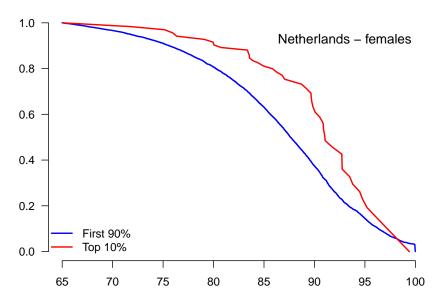
3 German public-sector pension Longevitas

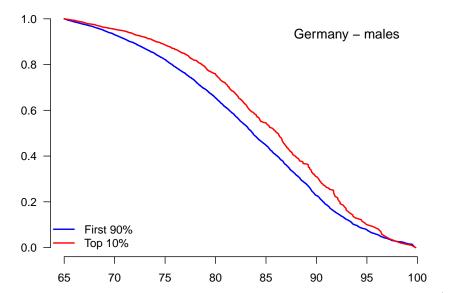
3 French top-up pension plan

www.longevitas.co.uk

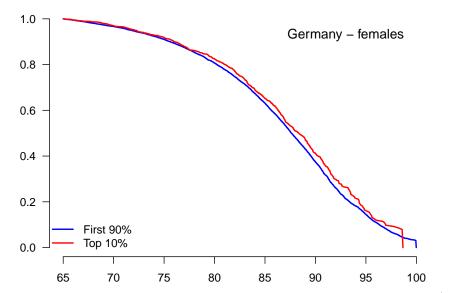

3 Risk factors

- Pension size also always available.
- Impact not always simple...


3 Dutch private-sector pension Longevitas



3 Dutch private-sector pension Longevitas



3 German public-sector pension Longevitas

3 German public-sector pension Longevitas

3 Risk factors

- Differentials vary from plan to plan.
- Need to understand porfolio's own experience data.
- Using data from other portfolios adds basis risk.

3 Risk factors

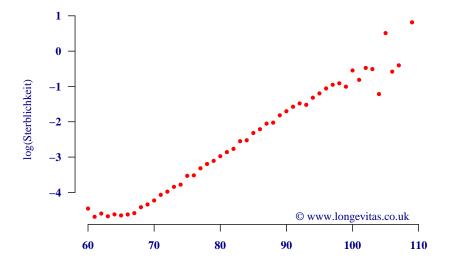
- Many powerful risk factors not recorded, e.g. smoker status.
- Have to use what is available...

3 UK annuitants

Richards and Jones [2004] used:

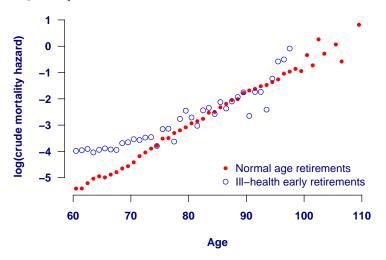
- Region (North v. South).
- Duration since retirement.
- Postcode.

3 German pensioners


Richards et al. [2013] used:

- \bullet Region (Bundesland).
- Ill-health v. normal retirement.
- First life v. widow(er).
- Private v. public sector.
- Whether member of largest scheme.

3 Importance of differentials


log(mortality) by age. Source: Richards et al. [2013, Figure 1].

3 Importance of differentials

log(mortality) by age and health status. Source: Richards et al. [2013, Figure 4].

3 Scottish pensioners

Richards [2019] used:

- First life v. widow(er).
- Early v. normal retirement.
- Duration since retirement.
- Season.

(Single local-authority employer with high geographical concentration, so region unworkable)

3 Risk factors — legality

Some risk factors are illegal to use for *individual* insurance contracts:

- Gender,
- Ethnicity,
- Religion.
- ... but gender is legal to use for B2B transactions.

4 Location, location, location...longevitas

4 Postcode profiling

- Consider two hypothetical Edinburgh pensioners.
- Same age, gender and pension size.
- One lives at postcode EH11 3NP.
- Other lives at postcode EH4 1PJ.
- Do they have the same mortality characteristics?

4 EH11 3NP

Source: ESPC, March 2019.

www.longevitas.co.uk 36/63

4 EH4 1PJ

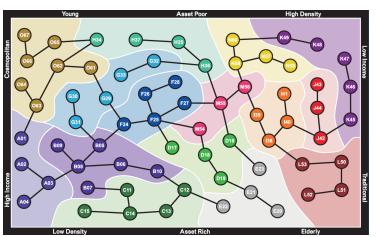
Source: Google Street View, May 2019.

www.longevitas.co.uk 37/63

4 Postcode profiling

- Housing says a lot about socio-demographic status.
- Google Street View impractical for thousands of postcodes in PRT transaction.
- Need systematic mapping of postcode to socio-demographic profile.

4 Postcode profiling


Definition

Geodemographic segmentation works on the basis that people living in the same small neighbourhood share characteristics.

4 Geodemographics

Mosaic family tree.

www.longevitas.co.uk 40/63

4 Mosaic profiles

EH11 3NP. **K47**: Municipal Challenge, Streetwise Singles.

EH4 1PJ. A01: City Prosperity, World Class Wealth.

www.longevitas.co.uk 41/63

4 Geodemographic profiling

Same approach works with hierarchical postcodes in:

- Canada,
- the Netherlands,
- UK, and
- USA.

For other countries we need the full address, not just the postcode.

5 Significance

5 Financial significance

Assessing significance from adding a risk factor:

- For statistical significance, use the drop in AIC.
- For financial significance, use change in liability valuation.

5 Impact of risk factors

Change in model fit and discounted cashflow valuation from adding risk factors. Period rates until the model in the last line of the table.

 α

Model	AIC	0		Change in PV (£m)	
Hermite I, age only	27279.4	n/a	835.3	n/a	
+gender	27192.5	-86.9	816.4	-18.9	
+widow(er) status	27177.6	-14.9	824.3	7.9	
+early-retirement status	27161.7	-15.9	810.2	-14.1	
+pension size	27099.5	-62.2	872.1	61.9	
+selection	27082.1	-17.4	863.0	-9.1	
+season	27045.8	-36.3	859.1	-3.9	
change from period mortality to forecast mortality:					
+age-related time trend	27044.0	-1.8	932.4	73.3	

Source: Richards [2019].

5 The bottom line

Risk factors vary in statistical and financial significance:

	Drop	Change	
	in AIC	in PV	
Pension size	62.2	£61.9m	
Time trend	1.8	£73.3m	
Season	36.3	£3.9m	

6 Convergence

6 Modelling differentials

- Mortality differentials not constant.
- Most differentials reduce with increasing age, a.k.a. convergence.
- Modelling convergence can be tricky.

6 Modelling differentials

Gompertz [1825] model:

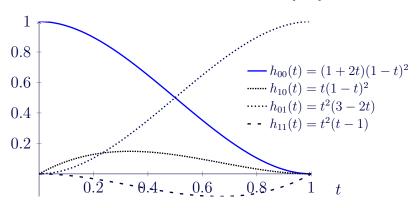
$$\log \mu_x = \alpha + \beta x$$

- Estimate α and β from data.
- Can vary α and β for each risk factor...

6 Convergence and crossover

Gompertz model: $\log \mu_x = \alpha + \beta x$.

6 Convergence and crossover



- Two-parameter approach produces undesirable crossover.
- With convergence around 90–95, β is technically redundant.
- Is there a one-parameter approach without crossover?

6 Hermite splines

Hermite basis splines for $t \in [0, 1]$.

6 Hermite splines for mortality Congevitas

$$\log \mu_x = \alpha h_{00}(t) + \omega h_{01}(t) + m_0 h_{10}(t) + m_1 h_{11}(t)$$

where $t = (x - x_0)/(x_1 - x_0)$ for some age range $[x_0, x_1]$.

- Estimate α , ω , m_0 and m_1 from data.
- Only vary α for each risk factor...

6 Convergence without crossovi Longevitas

Hermite model for $\log \mu_x$ with varying α .

6 Convergence without crossovi Longevitas

- Hermite-spline model yields convergence without crossover.
- No redundant parameters.
- Reduces minimum data needed for bespoke portfolio models.
- Ideally suited to PRT transactions.
- See Richards [2019] for details.

7 Conclusions

7 Conclusions

- Use portfolio's own experience data for PRT.
- Risk varies by more than just age, gender and pension size.
- Can use geodemographic profile...... or other portfolio-specific features.
- Statistical significance and financial significance quite different.
- New models allow convergence without crossover.

References I

- B. Gompertz. The nature of the function expressive of the law of human mortality. *Philosophical Transactions of the Royal Society*, 115:513–585, 1825.
- S. J. Richards. A Hermite-spline model of post-retirement mortality. *Scandinavian Actuarial Journal*, 2019. doi: 10.1080/03461238.2019.1642239.
- S. J. Richards and G. L. Jones. Financial aspects of longevity risk. Staple Inn Actuarial Society (SIAS), London, 2004.

References II

S. J. Richards, K. Kaufhold, and S. Rosenbusch. Creating portfolio-specific mortality tables: a case study. *European Actuarial Journal*, 3 (2):295–319, 2013. doi: https://doi.org/10.1007/s13385-013-0076-6.

The Economist. The ferment of finance. Special report on financial innovation, February 25th 2012:8, 2012.

More on longevity risk at •www.longevitas.co.uk

8 Legal matters

Longevitas is a registered trademark for Longevitas Ltd:

- in the UK (registration number 2434941),
- throughout the European Union (registration number 5854518), and
- in the USA (Trade Mark Registration No. 3707314).

9 About Longevitas

9 Longevitas

- Founded 2006.
- Based in Edinburgh, Scotland.
- Provides tools to analyse, price and manage longevity risk.
- Research partnership with Heriot-Watt University.

9 Longevitas software

- Used in UK, USA, Canada and Switzerland.
- Used by insurers, reinsurers and consultancies.