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1 Parametric mortality models
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1 Parametric mortality models

Gompertz [1825] µx = eα+βx

Makeham-Beard µx =
eε + eα+βx

1 + eα+ρ+βx

See Richards [2012] for more extensive list.
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1 Parametric mortality models
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1 Parametric survival models

Role of parameters:

α shifts level of log µx up or down.

β describes rate of change of log µx by age.

α and β strongly correlated [Richards et al., 2013].
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1 Parametric mortality models

Each life i gets its own personal values of α and β:

αi = α0 +
m∑

j=1

αrj
zi,j (1)

βi = β0 +
m∑

j=1

βrj
zi,j (2)

α0 is log µ0 for baseline group,

β0 is the baseline rate of increase with age x,

αrj
is the main effect of risk factor rj, j ∈ {1, 2, . . . ,m},

βrj
is the interaction of age with risk factor rj.

zi,j = 1 if risk factor rj applies, zero otherwise.
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1 Parametric survival models

Three problems with βrj :

1. Crossover.

2. Redundancy.

3. Signal strength.

www.longevitas.co.uk 8/54

http://www.longevitas.co.uk


1 Crossover

Mortality crossover in log µx for Gompertz model fitted to lives in
a UK pension scheme. Source: Macdonald et al. [2018, p120].
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1 Crossover

Do wealthier pensioners really have higher
mortality above age 85?

Data don’t support this; it is a model artefact.

Not prudent above age 85. . .

. . .but model fit also distorted at younger ages.
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1 Redundancy

Mortality differentials vanish around age 95.

βrj has opposite sign to αrj (mortality
convergence).

Could replace βrj with
−αrj
95

(or similar).

⇒ Don’t strictly need βrj (redundancy).
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1 Signal strength

Detecting a main effect (αrj) is easier than
detecting variation of effect by age (βrj).

⇒ can be hard to reliably estimate βrj . . .

. . .despite strong prior expectations of its value.
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1 Wish list for a model

Convergence of differentials by age.

No crossover.

No redundant parameters.
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2 Curve plotting
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2 Curve plotting

In computer graphics we often want to draw a smooth
path from one point to another:
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2 Charles Hermite (1822-1901)
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2 Hermite splines

Hermite basis functions:

h00(t) = (1 + 2t)(1− t)2 (3)

h10(t) = t(1− t)2 (4)

h01(t) = t2(3− 2t) (5)

h11(t) = t2(t− 1) (6)
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2 Hermite splines
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2 Hermite splines

Smooth curve drawn as set {(t, p(t))}, where:

p(t) = p0h00(t) +m0h10(t) + p1h01(t) +m1h11(t) (7)
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2 Hermite splines
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2 Hermite splines
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2 Hermite splines

What does this have to do with mortality modelling?
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3 Hermite mortality model
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3 Hermite mortality model

Set age interval [x0, x1].

Set p0 = log µx0
.

Set p1 = log µx1
.

Set t =
x− x0

x1 − x0
.

. . . then {(t, p(t))} will trace log µx in [x0, x1].
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3 Hermite mortality model

Smooth curve drawn as {(t, p(t))}, where:

p(t) = p0h00(t) +m0h10(t) + p1h01(t) +m1h11(t) (8)
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3 Hermite mortality model

Logarithm of force of mortality, µx:

log µx = log µx0
h00(t)+m0h10(t)+log µx1

h01(t)+m1h11(t)
(9)
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3 Hermite mortality model

Model for log µx:

log µx = αh00(t) +m0h10(t) + ωh01(t) +m1h11(t) (10)
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3 Hermite mortality model

Interactive online demo:

www.longevitas.co.uk/site/Hermite/HermiteAge.html
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3 Hermite mortality model

Estimate α, ω, m0 and m1.

αi for life i structured as before.

However, αi is modulated by reducing function h00.

⇒ effect of risk factors reduces with age
(convergence).

h00 never changes sign.

⇒ no crossover.

No β term.

⇒ no redundant parameters.

www.longevitas.co.uk 29/54

http://www.longevitas.co.uk


3 Gender and pension size
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3 Hermite mortality model

X Convergence of differentials by age.

X No crossover.

X No redundant parameters.

What more could we ask?
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4 Selection effects
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4 Selection effects

Mortality can also vary by since contract start.

Are there selection effects amongst pensioners?
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4 Selection effects

Deviance residuals for model with age, gender and pension size:
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4 Actual portfolio selection

Addition to log µx in respect of for selection effects:
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4 Actual portfolio selection

Deviance residuals by duration:
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5 Time trend
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5 Time trend

Mortality also varies by time.

Time trend often age-dependent. . .
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5 Population time trends
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5 Actual portfolio time trends
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6 Seasonal variation

www.longevitas.co.uk 41/54

http://www.longevitas.co.uk


6 Seasonal variation

Percentage of average daily number of deaths in Australia:
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6 Seasonal variation

Percentage of average daily number of deaths in Australia:
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6 Seasonal variation

Deaths in England and Wales as percentage of June count,
2015–17:
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6 Seasonal variation

Add a cyclic factor for the mortality hazard:

log µ∗x,r,y = log µx,r,y + eζ cos (2π(y − τ)) (11)

τ is proportion of the year after January 1st when
mortality peaks

eζ is the peak additional mortality at that time (on
logarithmic scale).
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6 Portfolio seasonal variation

Peak mortality:

Country Portfolio nature ζ̂ τ̂
(a) as %
of average

(b) time
of year

Scotland Pension plan −1.62 0.092 122% Feb 1st

UK Insurer annuities −2.00 0.001 114% Dec 30th

England Pension plan −2.02 0.071 114% Jan 25th

Netherlands Pension plan −2.25 0.055 111% Jan 19th

England Pension plan −2.29 0.048 111% Jan 16th

UK Insurer annuities −2.27 0.086 111% Jan 30th

Source: Richards [2019].
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7 The bottom line
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7 Impact of risk factors

Change in discounted cashflow valuation from adding risk factors.
Period rates until the model in the last line of the table.

Change
in AIC

PV (£m): Change in
total PVModel AIC Males Females Total

Hermite I, age only 27279.4 n/a 532.7 302.6 835.3 n/a
+gender 27192.5 −86.9 495.0 321.4 816.4 −18.9
+widow(er) status 27177.6 −14.9 495.7 328.6 824.3 7.9
+early-retirement status 27161.7 −15.9 485.6 324.6 810.2 −14.1
+pension size 27099.5 −62.2 538.5 333.6 872.1 61.9
+selection 27082.1 −17.4 534.7 328.3 863.0 −9.1
+season 27045.8 −36.3 532.3 326.8 859.1 −3.9
change from period mortality to forecast mortality:
+age-related time trend 27044.0 −1.8 579.5 352.9 932.4 73.3

Source: Richards [2019].
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7 The bottom line

8 risk factors modelled with just 14 parameters.

⇒ model is very parsimonious.
Risk factors vary in statistical and financial
significance:

I Least statistically significant (time trend) is very
significant financially.

I Least financially significant (season) is very significant
statistically.
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8 Conclusions
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8 Conclusions

Hermite splines offer flexible modelling of log µx.
Long list of benefits:

I Automatic convergence of mortality differentials by age.
I No crossover.
I No redundant parameters.
I Fewer parameters.
I Selection effects.
I Age-modulated time trend.
I Seasonal variation.
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