SIA, Abercromby Place, Edinburgh

The Hermite-spline model of mortality

Stephen J. Richards, BSc, FFA, PhD 30th September 2019

Copyright © Longevitas Ltd. All rights reserved. This presentation may be freely distributed, provided it is unaltered and has this copyright notice intact.

Overview

- 1. Parametric mortality models
- 2. Curve plotting
- 3. Hermite mortality model
- 4. Selection effects
- 5. Time trend
- 6. Seasonal variation
- 7. The bottom line
- 8. Conclusions

1 Parametric mortality models **Congevitas**

1 Parametric mortality models Tongevitas

Gompertz [1825] $\mu_x = e^{\alpha + \beta x}$

Makeham-Beard
$$\mu_x = \frac{e^{\epsilon} + e^{\alpha + \beta x}}{1 + e^{\alpha + \rho + \beta x}}$$

See Richards [2012] for more extensive list.

1 Parametric mortality models Tongevitas

Role of parameters:

- α shifts level of $\log \mu_x$ up or down.
- β describes rate of change of $\log \mu_x$ by age.

 α and β strongly correlated [Richards et al., 2013].

LONGEVITAS

1 Parametric mortality models **Congevitas**

Each life *i* gets its own personal values of α and β :

$$\alpha_i = \alpha_0 + \sum_{j=1}^m \alpha_{r_j} z_{i,j}$$
(1)
$$\beta_i = \beta_0 + \sum_{j=1}^m \beta_{r_j} z_{i,j}$$
(2)

- α_0 is $\log \mu_0$ for baseline group,
- β_0 is the baseline rate of increase with age x,
- α_{r_j} is the main effect of risk factor $r_j, j \in \{1, 2, \dots, m\}$,
- β_{r_j} is the interaction of age with risk factor r_j .

• $z_{i,j} = 1$ if risk factor r_j applies, zero otherwise. www.longevitas.co.uk

Three problems with β_{r_i} :

- 1. Crossover.
- 2. Redundancy.
- 3. Signal strength.

LONGEVITAS

1 Crossover

Congevitas

Mortality crossover in $\log \mu_x$ for Gompertz model fitted to lives in a UK pension scheme. Source: Macdonald et al. [2018, p120].

- Do wealthier pensioners really have higher mortality above age 85?
- Data don't support this; it is a model artefact.
- Not prudent above age 85...
 - ...but model fit also distorted at younger ages.

- Mortality differentials vanish around age 95.
- β_{r_j} has opposite sign to α_{r_j} (mortality convergence).
- Could replace β_{r_j} with $\frac{-\alpha_{r_j}}{95}$ (or similar). \Rightarrow Don't strictly need β_{r_j} (redundancy).

Detecting a main effect (α_{r_j}) is easier than detecting variation of effect by age (β_{r_j}).
 ⇒ can be hard to reliably estimate β_{r_j}...
 ...despite strong prior expectations of its value.

- Convergence of differentials by age.
- No crossover.
- No redundant parameters.

2 Curve plotting

In computer graphics we often want to draw a smooth path from one point to another:

2 Charles Hermite (1822-1901) Congevitas

Hermite basis functions:

$$h_{00}(t) = (1+2t)(1-t)^{2}$$
(3)

$$h_{10}(t) = t(1-t)^{2}$$
(4)

$$h_{01}(t) = t^{2}(3-2t)$$
(5)

$$h_{11}(t) = t^{2}(t-1)$$
(6)

2 Hermite splines

Smooth curve drawn as set $\{(t, p(t))\}$, where:

$$p(t) = p_0 h_{00}(t) + m_0 h_{10}(t) + p_1 h_{01}(t) + m_1 h_{11}(t)$$
 (7)

2 Hermite splines

2 Hermite splines

What does this have to do with mortality modelling?

3 Hermite mortality model

• Set age interval $[x_0, x_1]$.

• Set
$$p_0 = \log \mu_{x_0}$$
.

Smooth curve drawn as $\{(t, p(t))\}$, where:

$$p(t) = p_0 h_{00}(t) + m_0 h_{10}(t) + p_1 h_{01}(t) + m_1 h_{11}(t)$$
 (8)

Logarithm of force of mortality, μ_x :

$\log \mu_x = \log \mu_{x_0} h_{00}(t) + m_0 h_{10}(t) + \log \mu_{x_1} h_{01}(t) + m_1 h_{11}(t)$ (9)

Model for $\log \mu_x$:

$\log \mu_x = \alpha h_{00}(t) + m_0 h_{10}(t) + \omega h_{01}(t) + m_1 h_{11}(t) \quad (10)$

Interactive online demo:

www.longevitas.co.uk/site/Hermite/HermiteAge.html

- Estimate α , ω , m_0 and m_1 .
- α_i for life *i* structured as before.
- However, α_i is modulated by reducing function h₀₀.
 ⇒ effect of risk factors reduces with age (convergence).
- h_{00} never changes sign.
 - \Rightarrow no crossover.
- No β term.
 - \Rightarrow no redundant parameters.

3 Gender and pension size

Source: Richards [2019].

www.longevitas.co.uk

LONGEVITAS

- \checkmark Convergence of differentials by age.
- \checkmark No crossover.
- $\checkmark\,$ No redundant parameters.
- What more could we ask?

4 Selection effects

- Mortality can also vary by since contract start.
- Are there selection effects amongst pensioners?

Longevitas

Deviance residuals for model with age, gender and pension size:

Source: Richards [2019].

Addition to $\log \mu_x$ in respect of for selection effects:

Source: Richards [2019].

www.longevitas.co.uk

LONGEVITAS

4 Actual portfolio selection

Deviance residuals by duration:

Source: Richards [2019].

5 Time trend

- Mortality also varies by time.
- Time trend often age-dependent...

5 Population time trends

Source: Richards [2019].

5 Actual portfolio time trends **Congevitas**

Source: Richards [2019].

6 Seasonal variation

Source: de Looper [2002]. All causes, 1979–1999.

6 Seasonal variation

6 Seasonal variation

Deaths in England and Wales as percentage of June count, 2015–17:

www.longevitas.co.uk

LONGEVITAS

Add a cyclic factor for the mortality hazard:

$$\log \mu_{x,r,y}^* = \log \mu_{x,r,y} + e^{\zeta} \cos \left(2\pi (y - \tau)\right)$$
 (11)

- τ is proportion of the year after January 1st when mortality peaks
- e^ζ is the peak additional mortality at that time (on logarithmic scale).

6 Portfolio seasonal variation

				Peak mortality:		
Country	Portfolio nature	$\hat{\zeta}$	$\hat{\tau}$	(a) as $\%$ of average	(b) time of year	
Scotland	Pension plan	-1.62	0.092	122%	Feb 1 st	
UK	Insurer annuities	-2.00	0.001	114%	$Dec \ 30^{th}$	
England	Pension plan	-2.02	0.071	114%	Jan 25^{th}	
Netherlands	Pension plan	-2.25	0.055	111%	Jan 19^{th}	
England	Pension plan	-2.29	0.048	111%	Jan $16^{\rm th}$	
UK	Insurer annuities	-2.27	0.086	111%	Jan $30^{\rm th}$	

Source: Richards [2019].

CONGEVITAS

7 The bottom line

Change in discounted cashflow valuation from adding risk factors. Period rates until the model in the last line of the table.

		Change H		PV (£m):		Change in			
Model	AIC	in AIC	Males	Females	Total	total PV			
Hermite I, age only	27279.4	n/a	532.7	302.6	835.3	n/a			
+gender	27192.5	-86.9	495.0	321.4	816.4	-18.9			
+widow(er) status	27177.6	-14.9	495.7	328.6	824.3	7.9			
+early-retirement status	27161.7	-15.9	485.6	324.6	810.2	-14.1			
+pension size	27099.5	-62.2	538.5	333.6	872.1	61.9			
+selection	27082.1	-17.4	534.7	328.3	863.0	-9.1			
+season	27045.8	-36.3	532.3	326.8	859.1	-3.9			
change from period mortality to forecast mortality:									
+age-related time trend	27044.0	-1.8	579.5	352.9	932.4	73.3			

Source: Richards [2019].

- 8 risk factors modelled with just 14 parameters.
 ⇒ model is very parsimonious.
- Risk factors vary in statistical and financial significance:
 - Least statistically significant (time trend) is very significant financially.
 - Least financially significant (season) is very significant statistically.

8 Conclusions

- Hermite splines offer flexible modelling of $\log \mu_x$.
- Long list of benefits:
 - Automatic convergence of mortality differentials by age.
 - No crossover.
 - ▶ No redundant parameters.
 - Fewer parameters.
 - Selection effects.
 - Age-modulated time trend.
 - Seasonal variation.

- M. de Looper. Seasonality of death, volume Bulletin No. 3. Australian Institute of Health and Welfare, 2002. ISBN 978–1–74024–209–7.
- B. Gompertz. The nature of the function expressive of the law of human mortality. *Philosophical Transactions of the Royal Society*, 115:513–585, 1825.
- A. S. Macdonald, S. J. Richards, and I. D. Currie. Modelling Mortality with Actuarial Applications. Cambridge University Press, 2018. ISBN 978-1-107-04541-5.

S. J. Richards. The Hermite model of mortality, 2019.

- S. J. Richards. A handbook of parametric survival models for actuarial use. *Scandinavian Actuarial Journal*, 2012 (4):233–257, 2012. doi: https://doi.org/10.1080/03461238.2010.506688.
- S. J. Richards, K. Kaufhold, and S. Rosenbusch.
 Creating portfolio-specific mortality tables: a case study. *European Actuarial Journal*, 3 (2):295–319, 2013. doi:
 - https://doi.org/10.1007/s13385-013-0076-6.

More on longevity risk at • www.longevitas.co.uk

Longevitas is a registered trademark for Longevitas Ltd:

- in the UK (registration number 2434941),
- throughout the European Union (registration number 5854518), and
- in the USA (Trade Mark Registration No. 3707314).